cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 118 results. Next

A254118 Permutation of natural numbers: a(n) = A249745(1+A254103(n)) - 1.

Original entry on oeis.org

1, 2, 3, 6, 5, 4, 8, 20, 11, 7, 9, 33, 18, 23, 14, 13, 30, 36, 21, 44, 10, 29, 15, 55, 53, 28, 16, 74, 39, 41, 12, 179, 90, 96, 50, 114, 24, 42, 35, 92, 69, 47, 19, 86, 25, 51, 26, 236, 153, 110, 81, 101, 22, 45, 48, 221, 113, 119, 56, 77, 65, 38, 17, 546, 182
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2015

Keywords

Crossrefs

Inverse: A254117.
Other related permutations: A254116, A249745, A254103 (compare to the scatterplot of this one).
Cf. A254120 (= a(2^n)).

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    A254103(n) = { if(0==n,0,if(!(n%2),(3*A254103(n/2))-1,(3*(1+A254103((n-1)/2)))\2)); };
    A254116(n) = A064216(A254103(n));
    A254118(n) = (A254116(n+n+1)-1)/2;
    for(n=1, 8191, write("b254118.txt", n, " ", A254118(n)));
    (Scheme, two versions)
    (define (A254118 n) (+ -1 (A249745 (+ 1 (A254103 n)))))
    (define (A254118 n) (/ (+ -1 (A254116 (+ 1 n n))) 2))
    
  • Python
    from sympy import factorint, prevprime, floor
    from operator import mul
    from functools import reduce
    def a064216(n):
        f=factorint(2*n - 1)
        return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f])
    def a254103(n):
        if n==0: return 0
        if n%2==0: return 3*a254103(n//2) - 1
        else: return floor((3*(1 + a254103((n - 1)/2)))//2)
    def a254116(n): return a064216(a254103(n))
    def a(n): return (a254116(2*n + 1) - 1)//2
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017

Formula

a(n) = A249745(1+A254103(n)) - 1.
a(n) = (A254116((2*n)+1)-1) / 2. [Obtained also from the odd bisection of A254116.]

A266407 Permutation of natural numbers: a(n) = A064989(A263273((2*n)-1)).

Original entry on oeis.org

1, 2, 5, 3, 4, 17, 11, 10, 9, 7, 6, 19, 13, 8, 21, 31, 34, 71, 29, 22, 61, 25, 20, 59, 41, 18, 73, 23, 14, 33, 43, 12, 53, 37, 38, 35, 15, 26, 67, 47, 16, 157, 107, 42, 145, 55, 62, 197, 69, 68, 179, 113, 142, 129, 39, 58, 191, 137, 44, 45, 49, 122, 227, 101, 50, 199, 151, 40, 121, 57, 118, 211, 89, 82, 111, 149, 36, 91, 85
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2016

Keywords

Crossrefs

Inverse: A266408.
Cf. also A064216, A266401, A266403.

Programs

  • PARI
    A030102(n) = { my(r=[n%3]); while(0M. F. Hasler's Nov 04 2011 code in A030102.
    A263273 = n -> if(!n,n,A030102(n/(3^valuation(n,3))) * (3^valuation(n, 3))); \\ Taking of the quotient probably unnecessary.
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A266407 = n -> A064989(A263273((2*n)-1));
    for(n=1, 9842, write("b266407.txt", n, " ", A266407(n)));
    
  • Scheme
    (define (A266407 n) (A064989 (A263273 (+ n n -1))))

Formula

a(n) = A064989(A263273((2*n)-1)).

A285334 a(n) = A046523(A243505(n)).

Original entry on oeis.org

1, 2, 4, 8, 2, 16, 32, 6, 64, 128, 12, 256, 4, 2, 512, 1024, 24, 12, 2048, 48, 4096, 8192, 6, 16384, 8, 96, 32768, 36, 192, 65536, 131072, 12, 72, 262144, 384, 524288, 1048576, 6, 24, 2097152, 2, 4194304, 144, 768, 8388608, 72, 1536, 288, 16777216, 24, 33554432, 67108864, 30, 134217728, 268435456, 3072, 536870912, 576, 48, 216, 16, 6144, 4, 1073741824, 12288
Offset: 1

Views

Author

Antti Karttunen, Apr 24 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A243505(n)).
a(n) = A278221(A064216(n)).

A302847 Permutation of natural numbers: a(1) = 1; for n > 1, a(n) = A064989(2+A003961(n-1)).

Original entry on oeis.org

1, 2, 3, 5, 7, 4, 13, 11, 23, 8, 19, 6, 43, 17, 15, 31, 79, 10, 35, 9, 33, 34, 37, 29, 131, 26, 47, 113, 97, 14, 103, 22, 75, 61, 53, 73, 223, 41, 67, 46, 181, 12, 163, 25, 65, 106, 83, 21, 217, 74, 139, 89, 87, 59, 253, 58, 209, 44, 51, 20, 313, 38, 109, 271, 533, 49, 193, 71, 167, 50, 229, 18, 673, 16, 27, 187, 119, 69, 251, 39, 563, 238, 127, 55, 335, 24
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2018

Keywords

Crossrefs

Cf. A302848 (inverse).
Cf. also A297165, A302849.

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A302847(n) = if(1==n,n,A064989(2+A003961(n-1)));

Formula

a(1) = 1; for n > 1, a(n) = A064989(2+A003961(n-1)).
a(1) = 1; for n > 1, a(n) = A064216(1+A048673(n-1)).

A353412 The odd part of hybrid shift: a(n) = A000265(A252463(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 5, 1, 1, 5, 7, 3, 11, 7, 3, 1, 13, 9, 17, 5, 5, 11, 19, 3, 9, 13, 1, 7, 23, 15, 29, 1, 7, 17, 15, 9, 31, 19, 11, 5, 37, 21, 41, 11, 3, 23, 43, 3, 25, 25, 13, 13, 47, 27, 21, 7, 17, 29, 53, 15, 59, 31, 5, 1, 33, 33, 61, 17, 19, 35, 67, 9, 71, 37, 9, 19, 35, 39, 73, 5, 1, 41, 79, 21, 39, 43, 23, 11
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2022

Keywords

Crossrefs

Cf. A000265 (even bisection), A353413 (odd bisection).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A353412(n) = A000265(A252463(n));
    
  • Python
    from math import prod
    from sympy import factorint, prevprime
    def A353412(n): return int(bin(prod(1 if p == 2 else prevprime(p)*e for p, e in factorint(n).items()) if n % 2 else n//2)[2:].rstrip('0'),2) # Chai Wah Wu, Apr 18 2022

Formula

a(n) = A000265(A252463(n)).
a(2*n) = A000265(n), a(2*n-1) = A353413(n) = A000265(A064216(n)).
For all n >= 1, A000005(a(n)) = A320107(n).

A364063 Expansion of Sum_{k>0} k * x^k / (1 - x^(2*k-1)).

Original entry on oeis.org

1, 3, 4, 5, 8, 7, 8, 14, 10, 11, 18, 13, 17, 22, 16, 17, 26, 26, 20, 30, 22, 23, 42, 25, 30, 38, 28, 38, 42, 31, 32, 55, 44, 35, 50, 37, 38, 65, 50, 41, 63, 43, 56, 62, 46, 58, 66, 62, 50, 81, 52, 53, 100, 55, 56, 78, 58, 74, 94, 74, 68, 86, 80, 65, 90, 67, 82, 124, 70, 71, 98, 86, 92, 117, 76, 77
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[2*n - 1, # + 1 &]/2; Array[a, 100] (* Amiram Eldar, Jul 04 2023*)
  • PARI
    a(n) = sumdiv(2*n-1, d, d+1)/2;

Formula

a(n) = (1/2) * Sum_{d | 2*n-1} (d+1) = A007503(2*n-1)/2.
G.f.: Sum_{k>0} x^k / (1 - x^(2*k-1))^2.
a(n) = A336840(A064216(n)). - Antti Karttunen, Nov 30 2024

A243500 Self-inverse permutation of natural numbers: a(2n) = A003961(A048673(n)), a(2n-1) = 2 * A245448(n).

Original entry on oeis.org

2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 22, 27, 20, 15, 14, 33, 18, 17, 28, 13, 34, 11, 62, 29, 26, 25, 12, 19, 24, 75, 68, 43, 16, 21, 46, 69, 118, 45, 82, 243, 142, 99, 32, 63, 38, 35, 78, 171, 50, 49, 52, 51, 116, 275, 74, 147, 122, 81, 60, 59, 88, 23, 44, 201, 66, 65, 98, 31, 36
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2014

Keywords

Crossrefs

Formula

a(2n) = A003961(A048673(n)), a(2n-1) = 2 * A245448(n).
a(2n) = A003961(A048673(n)), a(2n-1) = A243502(A064989(2n-1)).
a(2n) = A003961((A003961(n)+1)/2), a(2n-1) = 2 * A064216(A064989(2n-1)).

A302848 Permutation of natural numbers: a(1) = 1; for n > 1, a(n) = 1+A064989(A003961(n)-2).

Original entry on oeis.org

1, 2, 3, 6, 4, 12, 5, 10, 20, 18, 8, 42, 7, 30, 15, 74, 14, 72, 11, 60, 48, 32, 9, 86, 44, 26, 75, 90, 24, 102, 16, 240, 21, 22, 19, 212, 23, 62, 80, 92, 38, 158, 13, 58, 168, 40, 27, 320, 66, 70, 59, 150, 35, 368, 84, 160, 110, 56, 54, 312, 34, 108, 111, 720, 45, 192, 39, 122, 78, 228, 68, 662, 36, 50, 33, 112, 87, 134, 17, 328, 416, 114, 47, 300, 128
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2018

Keywords

Crossrefs

Cf. A302847 (inverse).

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A302848(n) = if(1==n,n,1+A064989(A003961(n)-2));

Formula

a(1) = 1; for n > 1, a(n) = 1+A064989(A003961(n)-2).
a(1) = 1; for n > 1, a(n) = 1+A064216(A048673(n)-1).

A305424 Permutation of natural numbers: a(n) = A305422(2*n-1).

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 11, 8, 16, 13, 5, 22, 19, 12, 14, 25, 50, 29, 31, 28, 37, 38, 24, 41, 9, 32, 26, 47, 44, 55, 59, 10, 20, 61, 21, 118, 67, 88, 110, 53, 69, 18, 64, 73, 94, 87, 43, 52, 91, 100, 58, 97, 56, 15, 103, 62, 82, 109, 115, 48, 23, 74, 76, 49, 98, 117, 113, 152, 131, 46, 148, 137, 143, 164, 218, 27, 96, 227, 145, 230, 89, 182, 200
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2018

Keywords

Comments

Odd bisection of A305422 and A305425.

Crossrefs

Cf. A305423 (inverse).
Cf. also A064216.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305424(n) = A305422(n+n-1);

Formula

a(n) = A305422(2*n-1).

A349122 Inverse Möbius transform of A349128, where A349128(n) = phi(A064989(n)), A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and phi is Euler totient function.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 4, 4, 6, 7, 6, 11, 10, 6, 5, 13, 8, 17, 9, 10, 14, 19, 8, 9, 22, 8, 15, 23, 12, 29, 6, 14, 26, 15, 12, 31, 34, 22, 12, 37, 20, 41, 21, 12, 38, 43, 10, 25, 18, 26, 33, 47, 16, 21, 20, 34, 46, 53, 18, 59, 58, 20, 7, 33, 28, 61, 39, 38, 30, 67, 16, 71, 62, 18, 51, 35, 44, 73, 15, 16, 74, 79, 30, 39
Offset: 1

Views

Author

Antti Karttunen, Nov 13 2021

Keywords

Comments

Multiplicative because A349128 is.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, -1]^e; f[2, e_] := e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A349128(n) = { my(f = factor(n), q); prod(i=1, #f~, if(2==f[i,1], 1, q = precprime(f[i,1]-1); (q-1)*(q^(f[i,2]-1)))); };
    A349122(n) = sumdiv(n,d,A349128(d));
    
  • Python
    from sympy import prevprime, factorint, prod
    def f(p, e):
        return e+1 if p == 2 else prevprime(p)**e
    def a(n):
        return prod(f(p, e) for p, e in factorint(n).items()) # Sebastian Karlsson, Nov 15 2021

Formula

a(n) = Sum_{d|n} A349128(d).
For all n >= 1, a(A003961(n)) = n, a(2*n-1) = A064216(n).
From Sebastian Karlsson, Nov 15 2021: (Start)
a(2*n-1) = A064989(2*n-1).
Multiplicative with a(2^e) = e + 1 and a(p^e) = prevprime(p)^e for odd primes p. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (4/9) * Product_{p prime > 2} ((p^2-p)/(p^2-prevprime(p))) = 0.2942719052..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022
Previous Showing 101-110 of 118 results. Next