A248716
Numerator of (1/e)*Sum_{k>=0} (1/k!)*(Sum_{j=0..k} j^n).
Original entry on oeis.org
2, 3, 17, 27, 293, 791, 10583, 25685, 448303, 251411, 4503535, 6331107, 4436875097, 3335427631, 19619696071, 75379875277, 3019260651391, 16773385986619, 3047463007411973, 2732480436961811, 398377271835431771, 173581842021095897, 1716900426430701553, 35001773773285490879, 6684326532123939298051
Offset: 0
Terms up to n = 10, with denominators, are 2/1, 3/2, 17/6, 27/4, 293/15, 791/12, 10583/42, 25685/24, 448303/90, 251411/10, 4503535/33, ... .
From _Wolfdieter Lang_, Feb 03 2015: (Start)
With triangle A079618, A064538 and the Bell numbers A000110 the rationals r(n) are:
n=4: (1/30)*(-1*1 + 0*2 + 10*5 + 15*15 + 6*52) = 293/15.
n=9: (1/20)*(0*1 + (-3)*2 + 0*5 + 10*15 + 0*52 + (-14)*203 + 0*877 + 15*4140 + 10*21147 + 2*115975) = 251411/10.
(End)
-
Numerator[Table[(1/Exp[1])*Sum[Sum[j^n/k!, {j, 0, k}], {k, 0, Infinity}],
{n, 0, 100}]]
Edited. Comment and formula rewritten. Cross references added. -
Wolfdieter Lang, Feb 03 2015
A342321
T(n, k) = A343277(n)*[x^k] p(n, x) where p(n, x) = (1/(n+1))*Sum_{k=0..n} (-1)^k*E1(n, k)*x^(n - k) / binomial(n, k), and E1(n, k) are the Eulerian numbers A123125. Triangle read by rows, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 1, -4, 3, 0, -3, 22, -33, 12, 0, 1, -13, 33, -26, 5, 0, -5, 114, -453, 604, -285, 30, 0, 5, -200, 1191, -2416, 1985, -600, 35, 0, -35, 2470, -21465, 62476, -78095, 42930, -8645, 280, 0, 14, -1757, 21912, -88234, 156190, -132351, 51128, -7028, 126
Offset: 0
Triangle starts:
[n] T(n, k) A343277(n)
----------------------------------------------------------
[0] 1; [1]
[1] 0, 1; [2]
[2] 0, -1, 2; [6]
[3] 0, 1, -4, 3; [12]
[4] 0, -3, 22, -33, 12; [60]
[5] 0, 1, -13, 33, -26, 5; [30]
[6] 0, -5, 114, -453, 604, -285, 30; [210]
[7] 0, 5, -200, 1191, -2416, 1985, -600, 35; [280]
.
The coefficients of the polynomials p(n, x) = (Sum_{k = 0..n} T(n, k) x^k) / A343277(n) for the first few n:
[0] 1;
[1] 0, 1/2;
[2] 0, -1/6, 1/3;
[3] 0, 1/12, -1/3, 1/4;
[4] 0, -1/20, 11/30, -11/20, 1/5;
[5] 0, 1/30, -13/30, 11/10, -13/15, 1/6.
Sequences of rational polynomials p(n, x) with p(n, 1) = Bernoulli(n, 1):
-
CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)):
E1 := (n, k) -> combinat:-eulerian1(n, k):
poly := n -> (1/(n+1))*add((-1)^k*E1(n,k)*x^(n-k)/binomial(n,k), k=0..n):
Trow := n -> denom(poly(n))*CoeffList(poly(n)): seq(Trow(n), n = 0..9);
-
Poly342321[n_, x_] := If[n == 0, 1, Sum[x^k*k!*Sum[(-1)^(n - j)*StirlingS2[n, j] /((k - j)!(n - j + 1) Binomial[n + 1, j]), {j, 0, k}], {k, 1, n}]];
Table[A343277[n] CoefficientList[Poly342321[n, x], x][[k+1]], {n, 0, 9}, {k, 0, n}] // Flatten
A299145
Primes of the form j^k + (j-1)^k + ... + 2^k, for j > 1 and k > 0.
Original entry on oeis.org
2, 5, 13, 29, 97, 139, 353, 4889, 72353, 353815699, 42065402653, 84998999651, 102769130749, 15622297824266188673, 28101527071305611527, 20896779938941631284493075599148668795944697935466419104293, 105312291668560568089831550410013687058921146068446092937783402353
Offset: 1
2 = 2^1;
5 = 3^1 + 2^1;
13 = 3^2 + 2^2;
29 = 4^2 + 3^2 + 2^2;
97 = 3^4 + 2^4;
139 = 7^2 + 6^2 + 5^2 + 4^2 + 3^2 + 2^2;
353 = 4^4 + 3^4 + 2^4;
4889 = 4^6 + 3^6 + 2^6;
72353 = 4^8 + 3^8 + 2^8;
-
With[{nn = 350}, Sort@ Flatten@ Map[Select[#, PrimeQ] &, Table[Total[Range[j, 1, -1]^k] - 1, {j, 2, nn}, {k, nn - j}]]] (* Michael De Vlieger, Feb 03 2018 *)
-
limit=100000; v=vector(limit); for(n=1, ceil((-1+(1+8*limit)^(1/2))/2), for(k=1, logint(limit, n+0^(n-1)), a=sum(i=1,n,i^k)-1;if(isprime(a)&&a
A202533
For a polynomial P(m) with rational coefficients, denote by lcmd(P) the LCM of the denominators of all its coefficients. Then a(n) = lcmd(Sum_{i=1..m} (i^n*Sum_{j=1..i} j^n))/ lcmd((Sum_{i=1..m} i^n)^2).
Original entry on oeis.org
2, 6, 10, 42, 2, 22, 130, 10, 34, 798, 70, 230, 2, 6, 58, 4774, 154, 14, 962, 26, 82, 602, 42, 658, 34, 374, 5830, 6270, 38, 118, 7930, 390, 26, 3082, 46, 7810, 1606, 22, 22, 158, 306, 2822, 12818, 754, 2314, 168454, 12958, 418, 2134, 66, 1010, 7210, 14, 214, 104858
Offset: 0
Let n=1. Since lcmd(Sum_{i=1..m} i) = 2, lcmd(Sum_{i=1..m} i^2) = 6, lcmd(Sum_{i=1..m} i^3) = 4, then lcmd(Sum_{i=1..m} i*Sum_{j=1..i} j) = lcmd(Sum_{i=1..m} i^2*(i+1)/2) = 24, therefore, a(1) = 24/4 = 6.
Let p=53. Then a(26) = 5830 = 2*5*11*53 has maximal prime divisor 53.
-
LCMD[P_, m_] := LCM @@ Denominator[CoefficientList[P // FunctionExpand, m] ]; a[n_] := LCMD[Sum[i^n*HarmonicNumber[i, -n], {i, 1, m}], m]/ LCMD[ HarmonicNumber[m, -n]^2, m]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 60}] (* Jean-François Alcover, Feb 18 2016 *)
-
sp(p) = x * Polrev(vector(p+1, k, (-1)^(k==p)*binomial(p+1, k)*bernfrac(p+1-k))/(p+1));
lcmd(pol) = lcm(apply(x->denominator(x), Vec(pol)));
a(n) = {pol = x^n*sp(n); pnum = sum(i=0, poldegree(pol), polcoeff(pol, i)*sp(i)); lcmd(pnum)/lcmd(sp(n)^2);} \\ Michel Marcus, Feb 17 2016
Comments