cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A322529 Number of integer partitions of n whose parts all have the same number of prime factors (counted with or without multiplicity) and whose product of parts is a squarefree number.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 2, 3, 2, 2, 4, 2, 3, 3, 4, 4, 4, 3, 5, 4, 5, 6, 6, 6, 6, 6, 8, 6, 7, 9, 8, 11, 8, 11, 11, 11, 12, 13, 13, 15, 13, 17, 17, 18, 18, 17, 20, 22, 21, 24, 24, 24, 26, 29, 28, 33, 30, 35, 34, 38, 38, 45, 42, 43, 45, 48, 52, 54, 55, 59, 59, 65, 65, 72, 73
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

Such a partition must be strict (unless it is all 1's) and its parts must also be squarefree.

Examples

			The a(30) = 8 integer partitions:
  (30),
  (17,13),(19,11),(23,7),
  (17,11,2),(23,5,2),
  (13,7,5,3,2),
  (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[SameQ@@PrimeOmega/@#,SquareFreeQ[Times@@#]]&]],{n,30}]

Extensions

a(51)-a(69) from Jinyuan Wang, Jun 27 2020
a(70) onwards from Lucas A. Brown, Aug 17 2024

A319877 Numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).

Original entry on oeis.org

1, 7, 9, 14, 18, 23, 25, 28, 36, 46, 50, 56, 72, 92, 97, 100, 112, 121, 144, 151, 161, 169, 175, 183, 184, 185, 194, 195, 200, 207, 224, 225, 227, 242, 288, 289, 302, 322, 338, 350, 366, 368, 370, 388, 390, 400, 414, 448, 450, 454, 484, 541, 576, 578, 604, 644
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of 2-regular multiset multisystems (meaning all vertex-degrees are 2).

Examples

			The sequence of multiset multisystems whose MM-numbers belong to the sequence begins:
    1: {}
    7: {{1,1}}
    9: {{1},{1}}
   14: {{},{1,1}}
   18: {{},{1},{1}}
   23: {{2,2}}
   25: {{2},{2}}
   28: {{},{},{1,1}}
   36: {{},{},{1},{1}}
   46: {{},{2,2}}
   50: {{},{2},{2}}
   56: {{},{},{},{1,1}}
   72: {{},{},{},{1},{1}}
   92: {{},{},{2,2}}
   97: {{3,3}}
  100: {{},{},{2},{2}}
  112: {{},{},{},{},{1,1}}
  121: {{3},{3}}
  144: {{},{},{},{},{1},{1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  175: {{2},{2},{1,1}}
  183: {{1},{1,2,2}}
  184: {{},{},{},{2,2}}
  185: {{2},{1,1,2}}
  194: {{},{3,3}}
  195: {{1},{2},{1,2}}
  200: {{},{},{},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]

A320323 Numbers whose product of prime indices (A003963) is a perfect power and where each prime index has the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

7, 9, 19, 23, 25, 27, 49, 53, 81, 97, 103, 121, 125, 131, 151, 161, 169, 225, 227, 243, 289, 311, 343, 361, 419, 529, 541, 625, 661, 679, 691, 719, 729, 827, 841, 961, 1009, 1089, 1127, 1159, 1183, 1193, 1321, 1331, 1369, 1427, 1543, 1589, 1619, 1681, 1849
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their corresponding multiset multisystems (A302242):
    7: {{1,1}}
    9: {{1},{1}}
   19: {{1,1,1}}
   23: {{2,2}}
   25: {{2},{2}}
   27: {{1},{1},{1}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   81: {{1},{1},{1},{1}}
   97: {{3,3}}
  103: {{2,2,2}}
  121: {{3},{3}}
  125: {{2},{2},{2}}
  131: {{1,1,1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  225: {{1},{1},{2},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[GCD@@FactorInteger[Times@@primeMS[#]][[All,2]]>1,SameQ@@PrimeOmega/@primeMS[#]]&]
  • PARI
    is(n) = my (f=factor(n), pi=apply(primepi, f[,1]~)); #Set(apply(bigomega, pi))==1 && ispower(prod(i=1, #pi, pi[i]^f[i,2])) \\ Rémy Sigrist, Oct 11 2018

A320699 Numbers whose product of prime indices is a nonprime prime power (A246547).

Original entry on oeis.org

7, 9, 14, 18, 19, 21, 23, 25, 27, 28, 36, 38, 42, 46, 49, 50, 53, 54, 56, 57, 63, 72, 76, 81, 84, 92, 97, 98, 100, 103, 106, 108, 112, 114, 115, 121, 125, 126, 131, 133, 144, 147, 152, 159, 162, 168, 171, 184, 189, 194, 196, 200, 206, 212, 216, 224, 227, 228
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2018

Keywords

Comments

First differs from A320325 at a(43) = 152, A320325(43) = 151.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (4), (2,2), (4,1), (2,2,1), (8), (4,2), (9), (3,3), (2,2,2), (4,1,1), (2,2,1,1), (8,1), (4,2,1), (9,1), (4,4), (3,3,1), (16), (2,2,2,1), (4,1,1,1), (8,2), (4,2,2), (2,2,1,1,1), (8,1,1), (2,2,2,2), (4,2,1,1), (9,1,1), (25), (4,4,1), (3,3,1,1).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],With[{x=Times@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]^k]},!PrimeQ[x]&&PrimePowerQ[x]]&]

A320700 Odd numbers whose product of prime indices is a nonprime prime power (A246547).

Original entry on oeis.org

7, 9, 19, 21, 23, 25, 27, 49, 53, 57, 63, 81, 97, 103, 115, 121, 125, 131, 133, 147, 159, 171, 189, 227, 243, 289, 311, 343, 361, 371, 393, 399, 419, 441, 477, 513, 515, 529, 567, 575, 625, 661, 691, 719, 729, 917, 931, 933, 961, 1007, 1009, 1029, 1067, 1083
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2018

Keywords

Examples

			The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (4), (2,2), (8), (4,2), (9), (3,3), (2,2,2), (4,4), (16), (8,2), (4,2,2), (2,2,2,2), (25), (27), (9,3), (5,5), (3,3,3), (32), (8,4), (4,4,2), (16,2), (8,2,2), (4,2,2,2), (49), (2,2,2,2,2)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],With[{x=Times@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]^k]},OddQ[#]&&!PrimeQ[x]&&PrimePowerQ[x]]&]

A322546 Numbers k such that every integer partition of k contains a 1 or a prime power.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			24 does not belong to the sequence because there are integer partitions of 24 containing no 1's or prime powers, namely: (24), (18,6), (14,10), (12,12), (12,6,6), (6,6,6,6).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[n==1||PrimePowerQ[n],1,1/(1-x^n)],{n,nn}];
    Join@@Position[CoefficientList[Series[ser,{x,0,nn}],x],0]-1

A322547 Numbers k such that every integer partition of k contains a 1, a squarefree number, or a prime power.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 67, 71, 79
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			48 does not belong to the sequence because there are integer partitions of 48 containing no 1's, squarefree numbers, or prime powers, namely: (48), (36,12), (28,20), (24,24), (24,12,12), (18,18,12), (12,12,12,12).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n]||SquareFreeQ[n],1,1/(1-x^n)],{n,nn}];
    Join@@Position[CoefficientList[Series[ser,{x,0,nn}],x],0]-1

A319878 Odd numbers whose product of prime indices (A003963) is a square of a squarefree number (A062503).

Original entry on oeis.org

1, 7, 9, 23, 25, 97, 121, 151, 161, 169, 175, 183, 185, 195, 207, 225, 227, 289, 541, 661, 679, 687, 781, 841, 847, 873, 957, 961, 1009, 1089, 1193, 1427, 1563, 1589, 1681, 1819, 1849, 1879, 1895, 2023, 2043, 2167, 2193, 2209, 2231, 2425, 2437, 2585, 2601
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of 2-regular (all vertex-degrees are 2) multiset partitions (no empty parts).

Examples

			The sequence of multiset partitions whose MM-numbers belong to the sequence begins:
    1: {}
    7: {{1,1}}
    9: {{1},{1}}
   23: {{2,2}}
   25: {{2},{2}}
   97: {{3,3}}
  121: {{3},{3}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  175: {{2},{2},{1,1}}
  183: {{1},{1,2,2}}
  185: {{2},{1,1,2}}
  195: {{1},{2},{1,2}}
  207: {{1},{1},{2,2}}
  225: {{1},{1},{2},{2}}
  227: {{4,4}}
  289: {{4},{4}}
  541: {{1,1,3,3}}
  661: {{5,5}}
  679: {{1,1},{3,3}}
  687: {{1},{1,3,3}}
  781: {{3},{1,1,3}}
  841: {{1,3},{1,3}}
  847: {{1,1},{3},{3}}
  873: {{1},{1},{3,3}}
  957: {{1},{3},{1,3}}
  961: {{5},{5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,100,2],Or[#==1,SameQ[##,2]&@@Last/@FactorInteger[Times@@primeMS[#]]]&]

A330106 Number of integer partitions of n whose product is a powerful number.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 5, 5, 9, 11, 18, 19, 30, 36, 51, 62, 87, 104, 141, 171, 225, 271, 349, 419, 534, 643, 804, 965, 1197, 1431, 1766, 2106, 2571, 3063, 3719, 4410, 5325, 6305, 7567, 8939, 10678, 12572, 14961, 17567, 20804, 24389, 28775, 33626, 39551, 46106
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Examples

			The a(4) = 2 through a(10) = 18 partitions:
  (4)   (41)   (33)    (331)    (8)       (9)        (55)
  (22)  (221)  (42)    (421)    (44)      (81)       (82)
               (222)   (2221)   (422)     (333)      (91)
               (411)   (4111)   (2222)    (441)      (433)
               (2211)  (22111)  (3311)    (4221)     (442)
                                (4211)    (22221)    (811)
                                (22211)   (33111)    (3322)
                                (41111)   (42111)    (3331)
                                (221111)  (222111)   (4222)
                                          (411111)   (4411)
                                          (2211111)  (22222)
                                                     (42211)
                                                     (222211)
                                                     (331111)
                                                     (421111)
                                                     (2221111)
                                                     (4111111)
                                                     (22111111)
		

Crossrefs

The strict version is A330216.
Powerful numbers are A001694.
Partitions whose product is a perfect power are A320322.

Programs

  • Mathematica
    powQ[n_]:=Min@@Last/@FactorInteger[n]>1;
    Table[Length[Select[IntegerPartitions[n],powQ[Times@@#]&]],{n,0,30}]

A330216 Number of strict integer partitions of n whose product is a powerful number.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 7, 8, 8, 10, 12, 12, 15, 18, 19, 20, 24, 25, 28, 38, 41, 43, 50, 55, 63, 79, 85, 88, 104, 116, 124, 143, 157, 173, 197, 214, 235, 274, 294, 319, 363, 393, 430, 487, 529, 577, 647, 692, 752, 856, 925, 992, 1099
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Examples

			The a(n) partitions for n = 4, 9, 12, 13, 16, 17, 18:
  (4)  (9)    (8,4)      (9,4)    (16)         (9,8)      (12,6)
       (8,1)  (9,3)      (6,4,3)  (9,4,3)      (16,1)     (16,2)
              (6,3,2,1)  (8,4,1)  (12,3,1)     (8,6,3)    (9,8,1)
                         (9,3,1)  (9,4,2,1)    (9,6,2)    (8,6,3,1)
                                  (6,4,3,2,1)  (10,5,2)   (9,4,3,2)
                                               (12,3,2)   (9,6,2,1)
                                               (9,4,3,1)  (10,5,2,1)
                                                          (12,3,2,1)
		

Crossrefs

The non-strict version is A330106.
Powerful numbers are A001694.
Partitions whose product is a perfect power are A320322.

Programs

  • Mathematica
    powQ[n_]:=Min@@Last/@FactorInteger[n]>1;
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&powQ[Times@@#]&]],{n,0,30}]
Previous Showing 21-30 of 30 results.