cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A383055 Numerators of the partial sums of the reciprocals of the number of unitary divisors function (A034444).

Original entry on oeis.org

1, 3, 2, 5, 3, 13, 15, 17, 19, 5, 11, 23, 25, 13, 27, 29, 31, 8, 17, 35, 9, 37, 39, 10, 21, 43, 45, 23, 12, 97, 101, 105, 107, 109, 111, 113, 117, 119, 121, 123, 127, 16, 33, 67, 17, 69, 71, 18, 37, 75, 19, 77, 79, 20, 81, 41, 83, 21, 43, 173, 177, 179, 181, 185
Offset: 1

Views

Author

Amiram Eldar, Apr 15 2025

Keywords

Examples

			Fractions begin with 1, 3/2, 2, 5/2, 3, 13/4, 15/4, 17/4, 19/4, 5, 11/2, 23/4, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 42-43.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 50.

Crossrefs

The unitary analog of A104528.
Cf. A002161, A034444, A345288, A383056 (denominators).
Similar sequences: A064608, A370898, A379513.

Programs

  • Mathematica
    Numerator[Accumulate[1/Array[2^PrimeNu[#] &, 100]]]
  • PARI
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / 2^omega(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A034444(k)).
a(n)/A383056(n) = (c/sqrt(Pi)) * n / sqrt(log(n)) + O(n / log(n)^(3/2)), where c = A345288 (De Koninck and Ivić, 1980).

A383056 Denominators of the partial sums of the reciprocals of the number of unitary divisors function (A034444).

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 4, 4, 4, 1, 2, 4, 4, 2, 4, 4, 4, 1, 2, 4, 1, 4, 4, 1, 2, 4, 4, 2, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 4, 1, 4, 4, 1, 2, 4, 1, 4, 4, 1, 4, 2, 4, 1, 2, 8, 8, 8, 8, 8, 8, 2, 1, 4, 2, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 4, 4, 2, 1, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Amiram Eldar, Apr 15 2025

Keywords

Examples

			Fractions begin with 1, 3/2, 2, 5/2, 3, 13/4, 15/4, 17/4, 19/4, 5, 11/2, 23/4, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 42-43.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 50.

Crossrefs

The unitary analog of A104529.
Cf. A034444, A383055 (numerators).
Similar sequences: A064608, A370898, A379514.

Programs

  • Mathematica
    Denominator[Accumulate[1/Array[2^PrimeNu[#] &, 100]]]
  • PARI
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / 2^omega(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A034444(k)).

A226323 Number of ordered pairs (i,j) with |i| * |j| <= n and gcd(i,j) <= 1.

Original entry on oeis.org

1, 9, 17, 25, 33, 41, 57, 65, 73, 81, 97, 105, 121, 129, 145, 161, 169, 177, 193, 201, 217, 233, 249, 257, 273, 281, 297, 305, 321, 329, 361, 369, 377, 393, 409, 425, 441, 449, 465, 481, 497, 505, 537, 545, 561, 577, 593, 601, 617, 625, 641, 657, 673, 681, 697
Offset: 0

Views

Author

Robert Price, Jun 03 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, 5+4*add(mobius(k)^2*floor(n/k), k=1..n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 03 2013
  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[Abs[i]*Abs[j] ≤ n && GCD[i, j] ≤ 1, {i, j}], {i, -n, n}, {j, -n, n}], 1]], {Null}]]; Table[f[n], {n, 0, 100}]

Formula

a(n) = 4*A064608(n) + 5 for n > 0, a(0)=1. - Alois P. Heinz, Jun 03 2013

A306775 Partial sums of A060648: sum of the inverse Moebius transform of the Dedekind psi function from 1 to n.

Original entry on oeis.org

1, 5, 10, 20, 27, 47, 56, 78, 95, 123, 136, 186, 201, 237, 272, 318, 337, 405, 426, 496, 541, 593, 618, 728, 765, 825, 878, 968, 999, 1139, 1172, 1266, 1331, 1407, 1470, 1640, 1679, 1763, 1838, 1992, 2035, 2215, 2260, 2390, 2509, 2609, 2658, 2888, 2953, 3101
Offset: 1

Views

Author

Daniel Suteu, Mar 09 2019

Keywords

Comments

In general, for m >= 1, Sum_{k=1..n} Sum_{d|k} psi_m(d) = Sum_{k=1..n} k^m * A064608(floor(n/k)), where psi_m(d) is the generalized Dedekind psi function.
Additionally, for m >= 1, Sum_{k=1..n} Sum_{d|k} psi_m(d) ~ (n^(m+1) * zeta(m+1)^2) / ((m+1) * zeta(2*(m+1))).

Crossrefs

Programs

  • Maple
    with(numtheory): psi := n -> n*mul(1+1/p, p in factorset(n)):
    seq(add(psi(i)*floor(n/i), i=1..n), n=1..80); # Ridouane Oudra, Aug 27 2019
  • Mathematica
    Accumulate[Table[Sum[EulerPhi[n/d] * DivisorSigma[0, d^2], {d, Divisors[n]}], {n, 1, 100}]] (* Vaclav Kotesovec, Oct 09 2019 *)
  • PARI
    a(n) = sum(k=1, n, 2^omega(k) * (n\k) * (1+n\k))/2;

Formula

a(n) ~ (5/4) * n^2.
a(n) = Sum_{k=1..n} A060648(k).
a(n) = Sum_{k=1..n} Sum_{d|k} A001615(d).
a(n) = Sum_{k=1..n} k * A064608(floor(n/k)).
a(n) = (1/2)*Sum_{k=1..n} 2^omega(k) * floor(n/k) * floor(1+n/k).
a(n) = Sum_{k=1..n} A001615(k)*floor(n/k). - Ridouane Oudra, Aug 27 2019

A368642 a(n) = Sum_{k=1..n} mu(k)^2 * ceiling(n/k), where mu is the Möbius function (A008683).

Original entry on oeis.org

1, 3, 6, 8, 11, 14, 19, 21, 23, 26, 31, 33, 38, 41, 46, 50, 53, 55, 60, 62, 67, 72, 77, 79, 83, 86, 90, 92, 97, 100, 109, 111, 114, 119, 124, 128, 133, 136, 141, 145, 150, 153, 162, 164, 168, 173, 178, 180, 184, 186, 191, 195, 200, 202, 207, 211, 216, 221, 226, 228
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[k]^2*Ceiling[n/k], {k, n}], {n, 100}]

Formula

a(n) = A013928(n) + A008966(n) + A064608(n) - A034444(n).

A335007 Decimal expansion of 2*(gamma - zeta'(2)/zeta(2)) - 1, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 2, 9, 4, 3, 5, 3, 3, 1, 5, 9, 9, 2, 1, 3, 1, 3, 3, 4, 0, 1, 2, 7, 5, 2, 9, 0, 0, 2, 0, 4, 2, 6, 4, 8, 6, 6, 8, 9, 1, 2, 8, 3, 2, 3, 3, 4, 9, 3, 7, 0, 9, 1, 5, 6, 7, 2, 7, 9, 2, 9, 1, 9, 0, 6, 4, 5, 5, 7, 0, 0, 0, 8, 2, 8, 8, 8, 1, 0, 5, 5, 5, 4, 4, 9, 6, 2
Offset: 1

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			1.2943533159921313340127529002042648668912832334937...
		

Crossrefs

Cf. A001620 (gamma), A013661 (zeta(2)), A034444, A064608, A073002 (-zeta'(2)), A147533, A335006.

Programs

  • Mathematica
    RealDigits[2*EulerGamma - 2*Zeta'[2]/Zeta[2] - 1, 10, 100][[1]]
  • PARI
    2*Euler - 2*zeta'(2)/zeta(2) - 1 \\ Michel Marcus, May 19 2020

Formula

Equals lim_{k->oo} ((zeta(2)/k)*A064608(k) - log(k)) where A064608 is the partial sums of the number of unitary divisors (A034444).
Equals 2*A001620 + 2*A073002/A013661 - 1 = 2*A335006 - 1.
Previous Showing 11-16 of 16 results.