cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A256237 Primes p such that for all 2^k < p the numbers p + 2^k, p - 2^k, p*2^k + 1, and p*2^k - 1 are composite.

Original entry on oeis.org

8923, 24943, 35437, 42533, 52783, 83437, 105953, 116437, 126631, 133241, 145589, 164729, 172331, 192173, 204013, 215279, 254329, 304709, 308899, 398833, 430499, 436687, 454351, 476869, 479909, 483443, 497597, 522479, 527729, 529103, 545257, 561439, 562651
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 20 2015

Keywords

Crossrefs

Subsequence of A256163.

Programs

  • Magma
    lst:=[]; for p in [3..562651 by 2] do if IsPrime(p) then t:=0; k:=0; while 2^k lt p do if IsPrime(p-2^k) or IsPrime(p+2^k) or IsPrime(p*2^k-1) or IsPrime(p*2^k+1) then t:=1; break; end if; k+:=1; end while; if IsZero(t) then Append(~lst, p); end if; end if; end for; lst;

A382074 a(n) is the number of solutions to phi(x) + phi(n-x) = phi(n) where 1 <= x <= floor(n/2).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 0, 3, 2, 2, 0, 2, 2, 2, 2, 4, 0, 0, 0, 1, 3, 1, 1, 2, 0, 3, 1, 4, 0, 1, 0, 5, 3, 2, 0, 2, 0, 2, 3, 5, 0, 2, 1, 5, 2, 1, 0, 1, 0, 2, 2, 1, 2, 2, 0, 5, 2, 2, 0, 3, 0, 2, 4, 5, 1, 3, 0, 4, 0, 1, 0, 2, 2, 2, 4, 5
Offset: 1

Views

Author

Felix Huber, Mar 22 2025

Keywords

Comments

If p is a prime and p != 3, then a(p) = 0. Proof: For p = 2, phi(1) + phi(1) = 2 > phi(2) = 1. For p > 3, phi(x) + phi(p-x) <= x - 1 + p - x - 1 = p - 2 < p - 1 = phi(p).
If a(2*i) = 0, then i is a positive odd number. Proof: If i is a positive even number, then 2*i = 2^k*(2*m-1) with integers k, m where k > 1 and m > 0. Since phi(2^k*(2*m-1)) = phi(2^k)*phi(2*m-1) = 2^(k-1)*phi(2*m-1) = 2*2^(k-2)*phi(2*m-1) = 2*phi(2^(k-1)*(2*m-1)), it follows that x = 2^(k-1)*(2*m-1) is a solution to phi(x) + phi(2^k*(2*m-1)-x) = phi(2^k*(2*m-1)).
a(2*i) = 0 is not true for every positive odd i. For example, a(2*3) = 1. It is conjectured that a(2*A065381(n)) = 0 for n > 1. However, there are positive odd numbers i not in A065381 and for which a(2*i) = 0. For example, a(2*529) = a(2*1155) = 0.

Examples

			a(20) = 3 because phi(x) + phi(20-x) = phi(20) has 3 solutions for 0 <= x <= 10:
  x = 6: phi(6) + phi(14) = 2 + 6 = 8 = phi(20).
  x = 8: phi(8) + phi(12) = 4 + 4 = 8 = phi(20).
  x = 10: phi(10) + phi(10) = 4 + 4 = 8 = phi(20).
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A382074:=proc(n)
        local a,x;
        a:=0;
        for x to n/2 do
            if phi(x)+phi(n-x)=phi(n) then
                a:=a+1
            fi
        od;
        return a
    end proc;
    seq(A382074(n),n=1..88);
  • PARI
    a(n) = my(e=eulerphi(n)); sum(x=1, n\2, eulerphi(x) + eulerphi(n-x) == e); \\ Michel Marcus, Mar 22 2025

Formula

a(p) = 0 for primes p != 3.
a(2^k*(2*m-1)) > 0 for integers k, m where k > 1 and m > 0.
Conjecture: a(2*A065381(n)) = 0 for n > 1.

A181748 Twin primes not of the form p+2^k where p is prime and k>0.

Original entry on oeis.org

3, 149, 599, 809, 1019, 1619, 2789, 2999, 3119, 3299, 3539, 4001, 4229, 4271, 4649, 5099, 6269, 6449, 6659, 6791, 6869, 7331, 7547, 8087, 8387, 8429, 8861, 9239, 9431, 9929, 10007, 11069, 11171, 11549, 12239, 12251, 13001, 13217, 13679, 13901, 14009, 14081, 14249
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 09 2010

Keywords

Examples

			149 is a twin prime, 149-2^1 through 149-2^7 are all nonprime.
		

Crossrefs

Programs

  • Mathematica
    seqQ[p_] := PrimeQ[p] && PrimeQ[p + 2] && Module[{k = 2}, While[k < p && !PrimeQ[p - k], k *= 2]; k > p]; Select[Range[10^4], seqQ] (* Amiram Eldar, Dec 24 2019 *)

Extensions

Edited and extended by D. S. McNeil, Nov 17 2010
More terms from Amiram Eldar, Dec 24 2019

A263645 Primes that are neither of the form p + 2^k nor of the form p - 2^k with k > 0, and p prime.

Original entry on oeis.org

2, 52504261, 55414847, 79933129, 152485283, 166441831, 177702619, 197903207, 199013093, 220403959, 226794259, 230701763, 245215801, 266642731, 304921637, 321979283, 335035097, 355404353, 359018299, 369810769, 388048561, 412590797, 445661719, 506400173, 540426473
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 22 2015

Keywords

Comments

Primes p such that for all k > 0 the numbers p + 2^k and p - 2^k are nonprimes.
Except for 2, this sequence is the intersection of A065381 and A137715.

Crossrefs

Previous Showing 11-14 of 14 results.