cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A146485 Decimal expansion of Product_{n>=2} (1 - 1/(n^2*(n-1))).

Original entry on oeis.org

6, 7, 3, 9, 1, 7, 3, 6, 3, 3, 7, 6, 3, 5, 7, 5, 4, 1, 6, 6, 4, 4, 0, 8, 9, 7, 9, 3, 2, 2, 6, 3, 4, 4, 3, 8, 5, 6, 4, 7, 5, 9, 8, 1, 2, 3, 1, 2, 6, 7, 1, 7, 3, 6, 7, 9, 2, 9, 1, 6, 9, 0, 5, 7, 9, 0, 0, 3, 4, 5, 2, 7, 7, 6, 8, 2, 7, 9, 8, 0, 0, 5, 2, 6, 8, 8, 5, 5, 8, 6, 3, 9, 1, 8, 6, 5, 4, 0, 5, 0, 1, 8, 8, 5, 5
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Product of Artin's constant of rank 2 and the equivalent almost-prime products.

Examples

			0.6739173633763... = (1 - 1/4)*(1 - 1/18)*(1 - 1/48)*(1 - 1/100)*...
		

Crossrefs

Cf. A065414.

Programs

  • Maple
    r := 2 : ni := fsolve( (n+1)^r*n-1,n,complex) : 1.0/mul(GAMMA(1-d),d=ni) ; # R. J. Mathar, Feb 20 2009
  • Mathematica
    g[k_] := Gamma[Root[-3 + 8# - 5#^2 + #^3 & , k]]; RealDigits[1/(g[1]*g[2]*g[3]) // Re, 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)

Formula

The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r = 2.
s*Sum_{j=1..floor(s/3)} binomial(s-2j-1, j-1)/j = A001609(s)-1.
Equals 1/Product_{k=1..3} Gamma(1-x_k), where x_k are the 3 roots of the polynomial x*(x+1)^2-1. [R. J. Mathar, Feb 20 2009]

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A146486 Decimal expansion of Product_{q in A001358} (1-1/(q^2*(q-1))).

Original entry on oeis.org

9, 6, 9, 9, 3, 2, 3, 2, 5, 0, 0, 1, 5, 2, 5, 3, 1, 6, 2, 1, 4, 9, 2, 0, 2, 0, 7, 7, 8, 9, 1, 2, 9, 5, 7, 5, 9, 6, 1, 1, 4, 5, 7, 9, 4, 7, 9, 6, 6, 9, 6, 0, 8, 8, 0, 0, 6
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Semiprime analog of A065414.

Examples

			0.969932325001525316214920... = (1-1/48)*(1-1/180)*(1-1/648)*(1-1/900)*..
		

A146487 Decimal expansion of Product_{q in A014612} (1-1/(q^2*(q-1))).

Original entry on oeis.org

9, 9, 6, 5, 9, 8, 9, 2, 7, 4, 8, 0, 2, 4, 1, 2, 7, 3, 4, 1, 9, 1, 5, 9, 0, 4, 6, 3, 2, 9, 8, 9, 4, 6, 9, 2, 2, 9, 1, 0, 1, 0, 3, 9, 1, 0, 1, 1, 7, 8, 3, 8, 2, 0, 6, 5, 8
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

3-almost prime analog of A065414.

Examples

			0.99659892748024127.. = (1-1/448)*(1-1/1584)*(1-1/5508)*(1-1/7600)*..
		

Formula

The logarithm is -sum_{s>=2} sum_{j=1..floor[s/(1+r)]} binomial(s-r*j-1,j-1)*P_3(s)/j at r=2, where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.

A146488 Decimal expansion of Product_{q in A014613} (1-1/(q^2*(q-1))).

Original entry on oeis.org

9, 9, 9, 5, 9, 5, 2, 7, 8, 5, 8, 6, 5, 3, 5, 5, 3, 5, 6, 3, 7, 4, 5, 2, 4, 9, 3, 2, 4, 8, 3, 3, 6, 4, 5, 3, 0, 8, 3, 6, 5, 0, 6, 3, 2, 4, 1, 2, 6, 7, 4, 0, 4, 9, 8, 8, 7
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

4-almost prime analog of A065414.

Examples

			0.99959527858653553563... = (1-1/3840)*(1-1/13248)*(1-1/45360)*(1-1/62400)*..
		

Formula

The logarithm is -sum_{s>=2} sum_{j=1..floor[s/(1+r)]} binomial(s-r*j-1,j-1)*P_4(s)/j at r=2, where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.

A271869 Decimal expansion of Matthews' constant C_3, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

0, 6, 0, 8, 2, 1, 6, 5, 5, 1, 2, 0, 3, 0, 5, 0, 8, 6, 0, 0, 5, 6, 3, 2, 2, 7, 5, 4, 6, 1, 9, 2, 0, 8, 5, 5, 4, 3, 1, 3, 3, 7, 3, 7, 3, 4, 7, 5, 7, 6, 7, 9, 4, 1, 9, 8, 2, 6, 4, 3, 4, 0, 3, 1, 5, 0, 4, 0, 8, 0, 4, 3, 5, 0, 7, 2, 1, 2, 5, 6, 1, 6, 9, 5, 8, 6, 1, 8, 8, 8, 7, 3, 4, 8, 5, 8, 6, 6, 2, 4, 6, 8, 7, 3, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			0.0608216551203050860056322754619208554313373734757679419826434...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 70; $MaxExtraPrecision = 1000; m0 = 2000; dm = 200; Clear[s]; LR =
    LinearRecurrence[{2, 2, -6, 4, -1}, {0, 6, 0, 22, 5}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> 2 m0, WorkingPrecision -> digits+10] // Exp; s[m0]; s[m = m0+dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[ s[m-dm], 10, digits][[1]], Print[m]; m = m + dm]; Join[{0}, RealDigits[ s[m], 10, digits][[1]]]
  • PARI
    prodeulerrat(1 - (p^3 - (p - 1)^3)/(p^3*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_3 = Product_{p prime} 1 - (p^3 - (p - 1)^3)/(p^3*(p - 1)).

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020

A374831 Decimal expansion of Product_{p prime} (1 - (1/(p*(p - 1)))*p^2/(p^2 + 1)).

Original entry on oeis.org

4, 5, 8, 9, 3, 7, 4, 9, 8, 5, 0, 5, 4, 3, 5, 9, 6, 1, 3, 0, 6, 3, 4, 2, 6, 1, 8, 1, 0, 0, 1, 8, 9, 3, 8, 5, 6, 7, 2, 0, 0, 8, 1, 6, 3, 7, 4, 5, 2, 8, 9, 8, 1, 2, 3, 4, 2, 8, 7, 5, 7, 7, 7, 7, 3, 1, 7, 5, 4, 5, 6, 6, 1, 2, 2, 5, 4, 3, 0, 8, 5, 8, 9, 2, 2, 8, 6, 2, 5, 4, 3, 2, 0, 9, 3, 5, 8, 0, 7, 8, 2, 5, 7, 2, 9
Offset: 0

Views

Author

Stefano Spezia, Jul 21 2024

Keywords

Examples

			0.4589374985054359613063426181...
		

Crossrefs

Cf. A005596, A005597, A065414, A065418, A065419, A374830 (lower bound).

Programs

  • PARI
    prodeulerrat(1-p^2/(p*(p-1)*(p^2+1)))

A066517 Continued fraction expansion of Artin constant of rank 2: product(1-1/(p^3-p^2), p=prime).

Original entry on oeis.org

0, 1, 2, 3, 3, 1, 2, 2, 1, 3, 1, 8, 1, 4, 1, 1, 2, 1, 2, 31, 9, 2, 1, 3, 1, 3, 13, 3, 2, 11, 3, 1, 1, 1, 2, 2, 10, 10, 2, 1, 204, 4, 2, 12, 2, 8, 1, 1, 6, 17, 5, 2, 34, 4, 2, 2, 1, 5, 1, 1, 1, 1, 4, 1, 2, 1, 54, 3, 1, 6, 1, 13, 3, 2, 12, 1, 1, 1, 2, 2, 5, 2, 2, 7, 2, 2, 2, 1, 2, 1, 10, 3, 3, 1, 8, 9, 1
Offset: 0

Views

Author

Simon Plouffe Jan 05 2002

Keywords

Examples

			0.697501358496365903284670350820922924...
		

Crossrefs

Cf. A065414.

A271877 Decimal expansion of Matthews' constant C_4, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

0, 2, 6, 1, 0, 7, 4, 4, 6, 3, 1, 4, 9, 1, 7, 7, 0, 8, 0, 8, 3, 2, 4, 9, 3, 9, 4, 3, 1, 3, 8, 2, 1, 4, 6, 7, 2, 5, 5, 6, 2, 6, 6, 7, 3, 6, 4, 0, 5, 5, 3, 8, 0, 4, 5, 2, 7, 6, 1, 1, 7, 3, 3, 7, 1, 0, 2, 4, 9, 8, 2, 0, 0, 5, 6, 5, 8, 7, 0, 1, 4, 0, 9, 9, 6, 8, 4, 7, 0, 4, 8, 1, 5, 1, 1, 5, 2, 2, 6, 0, 3, 8, 6, 9, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			0.026107446314917708083...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 2000; LR = LinearRecurrence[{2, 3, -10, 10, -5, 1}, {0, -8, 6, -40, 35, -194}, 10^4]; r[n_Integer] := LR[[n]]; NSum[r[n] PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2000, WorkingPrecision -> 300, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, 20]& // First // Prepend[#, 0]&
    $MaxExtraPrecision = 1000; Clear[f]; f[p_] := 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)); Do[c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 105]]], {m, 100, 1000, 100}] (* Vaclav Kotesovec, Jun 19 2020 *)
  • PARI
    prodeulerrat(1 - (p^4 - (p - 1)^4)/(p^4*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_4 = Product_{p prime} 1 - (p^4 - (p - 1)^4)/(p^4*(p - 1)).

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020
Previous Showing 11-18 of 18 results.