cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A333938 Decimal expansion of Product_{k>=1} (1 - k/2^k).

Original entry on oeis.org

0, 7, 8, 8, 9, 8, 3, 5, 0, 0, 2, 1, 2, 4, 9, 1, 8, 1, 0, 0, 6, 4, 1, 8, 5, 9, 2, 0, 1, 2, 2, 9, 4, 7, 7, 7, 4, 7, 3, 6, 7, 2, 8, 1, 4, 3, 4, 5, 8, 4, 9, 1, 2, 5, 0, 8, 7, 3, 9, 6, 7, 2, 1, 4, 6, 8, 7, 0, 4, 5, 6, 5, 7, 4, 5, 4, 2, 7, 2, 3, 4, 5, 9, 1, 3, 5, 5, 5, 0, 3, 8, 1, 4, 3, 9, 6, 5, 5, 7, 1, 5, 1, 6, 1, 4, 2
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 11 2020

Keywords

Examples

			0.0788983500212491810064185920122947774736728143458491250873967214687...
		

Crossrefs

Programs

  • Maple
    evalf(Product(1 - k/2^k, k = 1..infinity), 100);
  • Mathematica
    Join[{0},RealDigits[Product[1-n/2^n,{n,500}],10,120][[1]]] (* Harvey P. Dale, Jan 12 2024 *)
  • PARI
    prodinf(k=1, 1 - k/2^k)

Formula

Equals exp(-Sum_{j>=1} polylog(-j, 1/2^j)/j).

A347830 a(n) = Sum_{k=0..n} 2^k * A000009(k) * A000041(n-k).

Original entry on oeis.org

1, 3, 8, 27, 67, 189, 509, 1329, 3344, 8694, 22062, 54756, 136741, 335103, 822277, 2016738, 4872787, 11711655, 28253743, 67319328, 160333627, 381350646, 901272326, 2121969771, 4991176893, 11689645776, 27305992220, 63705989106, 148106539514, 343371565449, 795524336390
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k*PartitionsQ[k]*PartitionsP[n-k], {k, 0, n}], {n, 0, 50}]
    nmax = 50; CoefficientList[Series[Product[(1 + 2^k*x^k) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ A065446 * 2^n * A000009(n).
a(n) ~ 2^(n-2) * exp(Pi*sqrt(n/3)) / (3^(1/4) * QPochhammer(1/2) * n^(3/4)).
G.f.: Product_{k>=1} (1 + 2^k*x^k) / (1 - x^k).

A370468 Decimal expansion of Product_{k>=2} 1 / (1 - 1/k^k).

Original entry on oeis.org

1, 3, 9, 0, 5, 2, 1, 7, 8, 4, 4, 8, 1, 8, 2, 1, 6, 8, 0, 5, 6, 9, 0, 3, 5, 5, 0, 5, 0, 2, 6, 6, 3, 1, 6, 8, 2, 5, 1, 9, 6, 1, 2, 7, 6, 5, 4, 7, 7, 0, 2, 8, 1, 7, 3, 4, 6, 8, 6, 5, 7, 7, 0, 1, 9, 1, 5, 3, 8, 4, 0, 3, 6, 2, 3, 8, 1, 6, 1, 4, 3, 1, 1, 4, 4, 8, 6, 2, 3, 7, 0, 6, 3, 7, 3, 8, 5, 0, 8, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2024

Keywords

Examples

			1.3905217844818216805690355050266316825...
		

Crossrefs

A276823 a(n) = 3 * [3*n]_2! / ([2*n+1]_2! * [n+1]_2!), where [n]_q! is the q-factorial.

Original entry on oeis.org

1, 9, 1241, 2634489, 87807053113, 46414431022602681, 390913823614809035461305, 52571422826552549403006580802745, 113007269646365312407427675894837602068665, 3884802624238339577626451297006421856376970743148729
Offset: 1

Views

Author

Vladimir Reshetnikov, Sep 18 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> 3*mul((2^j-1), j=1..3*n)/
             (mul((2^j-1), j=1..2*n+1)*
              mul((2^j-1), j=1..n+1)):
    seq(a(n), n=1..12);  # Alois P. Heinz, Sep 20 2016
  • Mathematica
    Table[3 QFactorial[3 n, 2]/(QFactorial[2 n + 1, 2] QFactorial[n + 1, 2]), {n, 10}] (* or *)
    Table[3 QBinomial[3 n, 2 n + 1, 2]/(1 - 3 * 2^n + 2^(2 n + 1)), {n, 10}]

Formula

a(n) ~ c * 2^((n-2)*(2*n+1)), where c = 3/QPochhammer(1/2, 1/2) = 3*A065446 = 3/A048651. - Vaclav Kotesovec, Sep 20 2016

A306947 Expansion of e.g.f. Product_{k>=0} 1/(1 - x^(2^k)/2^k).

Original entry on oeis.org

1, 1, 3, 9, 48, 240, 1620, 11340, 103320, 929880, 9865800, 108523800, 1362160800, 17708090400, 253361908800, 3800428632000, 63340477200000, 1076788112400000, 19769829743664000, 375626765129616000, 7640832869429760000, 160457490258024960000, 3559701523615997760000
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1/(1 - x^2^k/2^k), {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[Boole[IntegerQ[Log[2, d]]] d^(1 - k/d), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[Boole[IntegerQ[Log[2, d]]] d^(1 - k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]

Formula

a(n) ~ c * n!, where c = A065446 = 1/A048651 = 1/QPochhammer[1/2] = 3.4627466194550636115379573429244311645407579... - Vaclav Kotesovec, Mar 18 2019
Previous Showing 21-25 of 25 results.