cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A332971 Infinitary phibonacci numbers: solutions k of the equation iphi(k) = iphi(k-1) + iphi(k-2) where iphi(k) is an infinitary analog of Euler's phi function (A091732).

Original entry on oeis.org

3, 4, 7, 23, 121, 2857, 5699, 6377, 9179, 46537, 63209, 244967, 654497, 1067873, 1112009, 3435929, 3831257, 6441593, 7589737, 7784507, 8149751, 14307856, 22434089, 24007727, 24571871, 44503417, 44926463, 56732729, 128199059, 140830367, 190145936, 401767631, 403152737
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			7 is a term since iphi(7) = 6 and iphi(5) + iphi(6) = 4 + 2 = 6.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], 1])); iphi[1] = 1; iphi[n_] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) - 1); Select[Range[3, 10^5], iphi[#] == iphi[# - 1] + iphi[# - 2] &]

A332972 Solutions k of the equation cototient(k) = cototient(k-1) + cototient(k-2) where cototient(k) is A051953.

Original entry on oeis.org

3, 4, 105, 165, 195, 2205, 2835, 38805, 131145, 407925, 936495, 1025505, 1231425, 1276905, 1788255, 1925565, 2521695, 2792145, 2847585, 3289935, 5003745, 5295885, 5710089, 6315309, 6986889, 13496385, 17168085, 19210065, 20171385, 22348365, 26879685, 27798705
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			3 is a term since cototient(3) = 1 and cototient(1) + cototient(2) = 0 + 1 = 1.
105 is a term since cototient(105) = 57 and cototient(103) + cototient(104) = 1 + 56 = 57.
		

Crossrefs

Programs

  • Mathematica
    cotot[n_] := n - EulerPhi[n]; Select[Range[3, 10^6], cotot[#] == cotot[# - 1] + cotot[# - 2] &]

A332974 Solutions k of the equation s(k) = s(k-1) + s(k-2) where s(k) = usigma(k) - k is the sum of proper unitary divisors of k (A063919).

Original entry on oeis.org

3, 21, 321, 1257, 3237, 146139, 268713, 584835, 26749089, 9988999095, 25997557299, 54449485353, 935628578283, 2105722150095, 3921293253003, 8234992646643
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Comments

a(17) > 10^13. - Giovanni Resta, May 09 2020

Examples

			21 is a term since s(21) = 11 and s(19) + s(20) = 1 + 10 = 11.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); s[n_] := usigma[n] - n; Select[Range[3, 6*10^5], s[#] == s[# - 1] + s[# - 2] &]

Extensions

a(12)-a(16) from Giovanni Resta, May 09 2020

A332976 Solutions k of the equation s(k) = s(k-1) + s(k-2) where s(k) = isigma(k) - k is the sum of proper infinitary divisors of k (A126168).

Original entry on oeis.org

3, 8, 10, 21, 3237, 7377, 146139, 584835, 9988999095, 25997557299
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			8 is a term since s(8) = 7 and s(6) + s(7) = 6 + 1 = 7.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; s[n_] := isigma[n] - n; Select[Range[3, 6*10^5], s[#] == s[# - 1] + s[# - 2] &]

A065604 a(n) = smallest k satisfying the equation phi(k) = phi(k-1) + phi(k-2) and having just n prime factors.

Original entry on oeis.org

3, 1037, 619697, 218688017, 32617225577
Offset: 1

Views

Author

Robert G. Wilson v, Dec 01 2001

Keywords

Examples

			a(1) = 3 which is prime and is the first term in A065557, a(2) = 1037 = 17*61 which is the first term in A065572, a(3) = 619697=13*73*653
		

Crossrefs

Cf. A065557 and A065572.

Programs

  • Mathematica
    a = Table[0, {4}]; x = y = 1; Do[ z = EulerPhi[n]; If[z == x + y, If[l = Length[ FactorInteger[ n]]; a[[l]] == 0, a[[l]] = n; Print[n]]]; x = y; y = z, {n, 3, 10^7 } ]; a

Extensions

a(5) from Donovan Johnson, Feb 05 2010

A266164 Primes p such that phi(p) = phi(p-2) + phi(p-1); Phibonacci primes.

Original entry on oeis.org

3, 5, 7, 11, 17, 23, 37, 41, 47, 101, 137, 233, 257, 857, 1297, 1601, 2017, 4337, 14401, 16097, 30497, 62801, 65537, 77617, 686737, 18800897, 255080417, 12885295097, 12918324737, 96052225601, 516392008697, 7026644072737
Offset: 1

Views

Author

Jaroslav Krizek, Dec 22 2015

Keywords

Comments

Primes from A065557; complement of A065572 with respect to A065557.
The first 5 known Fermat primes from A019434 are in sequence.

Examples

			17 is in this sequence because phi(17) = phi(15) + phi(16); 16 = 8 + 8.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..5*10^7] | IsPrime(n) and EulerPhi(n) eq EulerPhi(n-2)+ EulerPhi(n-1)]
  • Maple
    select(t -> isprime(t) and t-1 = numtheory:-phi(t-1) + numtheory:-phi(t-2), [seq(i,i=3..10^6,2)]); # Robert Israel, Dec 22 2015
  • Mathematica
    Select[Prime[Range[56000]],EulerPhi[#]==EulerPhi[#-2]+EulerPhi[#-1]&] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, Aug 22 2025 *)
Previous Showing 11-16 of 16 results.