cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 74 results. Next

A277825 a(n) = A048725(A065621(n)) = A048720(A065621(n),5).

Original entry on oeis.org

5, 10, 27, 20, 57, 54, 39, 40, 125, 114, 99, 108, 65, 78, 95, 80, 245, 250, 235, 228, 201, 198, 215, 216, 141, 130, 147, 156, 177, 190, 175, 160, 485, 490, 507, 500, 473, 470, 455, 456, 413, 402, 387, 396, 417, 430, 447, 432, 277, 282, 267, 260, 297, 294, 311, 312, 365, 354, 371, 380, 337, 350, 335, 320, 965, 970, 987, 980, 1017, 1014, 999, 1000
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2016

Keywords

Crossrefs

Column 3 of A277820, Column 5 of A277320.

Programs

Formula

a(n) = A048724(A277823(n)) = A048725(A065621(n)).
a(n) = A048720(A065621(n),5).

A325571 Composite numbers n that have no divisor d > 1 such that A048720(A065621(d),n/d) = n.

Original entry on oeis.org

15, 25, 27, 39, 51, 55, 57, 63, 69, 77, 81, 85, 87, 91, 95, 99, 111, 115, 117, 119, 121, 123, 125, 141, 143, 145, 147, 159, 169, 171, 175, 177, 183, 185, 187, 201, 203, 205, 207, 209, 213, 215, 219, 221, 231, 235, 237, 243, 245, 247, 249, 253, 255, 261, 265, 267, 275, 285, 287, 289, 291, 295, 299, 301, 303, 305, 319, 321
Offset: 1

Views

Author

Antti Karttunen, May 10 2019

Keywords

Crossrefs

Intersection of A002808 and A325570.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    isA325571(n) = ((n>1)&&!isprime(n)&&fordiv(n,d,if(A048720(A065621(n/d),d)==n,return(d==n))));

A379119 a(1) = 1; for n > 1, a(n) is the smallest unitary divisor d > 1 of n such that A048720(A065621(sigma(n/d)),sigma(d)) is equal to sigma(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 4, 13, 2, 5, 16, 17, 18, 19, 4, 3, 2, 23, 8, 25, 13, 27, 4, 29, 2, 31, 32, 11, 34, 5, 36, 37, 38, 13, 8, 41, 2, 43, 4, 45, 2, 47, 16, 49, 25, 17, 4, 53, 54, 5, 8, 19, 29, 59, 4, 61, 2, 9, 64, 13, 2, 67, 68, 23, 2, 71, 8, 73, 74, 25, 4, 11, 13, 79, 16, 81, 82, 83, 4, 85, 2, 29, 8, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2024

Keywords

Crossrefs

Cf. A000203, A048720, A065621, A379113, A379114 (positions of terms such that a(n) < n).
Cf. also A379120.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A379119(n) = if(1==n,n,my(s=sigma(n)); fordiv(n,d,if((d>1) && 1==gcd(d,n/d) && A048720(A065621(sigma(n/d)),sigma(d))==s,return(d))));

Formula

a(n) = n / A379113(n).

A379125 Sum of divisors of those odd squares k for which A379113(k) > 1, i.e., k that have a proper unitary divisor d > 1 such that A048720(A065621(sigma(d)),sigma(k/d)) is equal to sigma(k).

Original entry on oeis.org

403, 4123, 4953, 18291, 46101, 73749, 133939, 400179, 291441, 542469, 618673, 1153633, 1119859, 1098867, 1077699, 1599249, 2309619, 6848721, 20421219, 20131059, 17598529, 17022999, 44205381, 59669253, 80520921, 68946969, 88131729, 83998281, 88119813, 97595019, 102760497, 137273157, 147291249, 211492119, 574669953
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2024

Keywords

Crossrefs

Programs

  • PARI
    forstep(n=1,oo,2,if(A379113(n^2)>1, k++; print1(sigma(n^2), ", ")));

Formula

a(n) = A000203(A379121(n)).
a(n) = A277320(sigma(A379123(n)), sigma(A379124(n))).
a(n) = sigma(A379123(n)) * sigma(A379124(n)).

A379221 Square array A(n, k) = A048720(A065621(sigma((2n-1)^2)), sigma((2k-1)^2)), read by falling antidiagonals, (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.

Original entry on oeis.org

1, 13, 21, 31, 233, 35, 57, 403, 439, 73, 121, 845, 961, 805, 137, 133, 1549, 1899, 1831, 1765, 397, 183, 2753, 4011, 4017, 3943, 3025, 475, 403, 2331, 4399, 7665, 7537, 4123, 2159, 695, 307, 7919, 5945, 9709, 16177, 9365, 5737, 7635, 855, 381, 5839, 12501, 10447, 17965, 18389, 10707, 13261, 5299, 901, 741, 4953, 9525, 27083, 24207, 49465, 24339, 27295, 10093, 4537, 1837
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2024

Keywords

Examples

			The top left corner of the array:
   n\k   |    1      2      3      4       5       6       7       8       9
(*2-1)^2 |    1      9     25     49      81     121     169     225     289
---------+-------------------------------------------------------------------
   1   1 |    1,    13,    31,    57,    121,    133,    183,    403,    307,
   2   9 |   21,   233,   403,   845,   1549,   2753,   2331,   7919,   5839,
   3  25 |   35,   439,   961,  1899,   4011,   4399,   5945,  12501,   9525,
   4  49 |   73,   805,  1831,  4017,   7665,   9709,  10447,  27083,  17515,
   5  81 |  137,  1765,  3943,  7537,  16177,  17965,  24207,  50315,  37163,
   6 121 |  397,  3025,  4123,  9365,  18389,  49465,  60243,  86471, 108263,
   7 169 |  475,  2159,  5737, 10707,  24339,  60215,  52817,  76125, 131005,
   8 225 |  695,  7635, 13261, 27295,  51039,  87019,  76565, 245801, 183625,
   9 289 |  855,  5299, 10093, 18047,  37823, 107915, 130229, 183305, 200041,
  10 361 |  901,  4537, 12003, 22365,  46621, 118545,  98539, 162655, 248191,
  11 441 | 1837,  8945, 24187, 43317,  90741, 232729, 201779, 311335, 504583,
  12 529 | 1657, 11349, 18231, 40193,  66369, 205597, 231263, 338075, 449339,
  13 625 | 1301, 14825, 25235, 56909, 105229, 170945, 156187, 508399, 387535,
  14 729 | 3277, 22929, 36059, 81877, 134293, 416121, 464275, 684551, 888103,
  15 841 | 1451, 15967, 28601, 50979, 110051, 181895, 139777, 469709, 346669,
  16 961 | 1057, 13741, 32767, 58137, 125785, 132133, 182871, 425971, 322387,
		

Crossrefs

Cf. A379223 (row 1), A379224 (column 1).
Cf. also A065768, A379220.

Programs

  • PARI
    up_to = 66;
    A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1, n+n-1);
    A379221sq(x,y) = A048720(A065621(sigma((x+x-1)^2)), sigma((y+y-1)^2));
    A379221list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379221sq(col,(a-(col-1))))); (v); };
    v379221 = A379221list(up_to);
    A379221(n) = v379221[n];

Formula

A(n, k) = A277320(A379223(n), A379223(k)).

A245812 Self-inverse permutation of natural numbers: a(0) = 0, a(1) = 1, and for n > 1, if A065620(n) < 0, a(n) = A065621(1+a(-(A065620(n)))), otherwise a(n) = A048724(a(A065620(n)-1)).

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 4, 5, 15, 14, 13, 12, 11, 10, 9, 8, 24, 25, 26, 27, 28, 29, 30, 31, 16, 17, 18, 19, 20, 21, 22, 23, 57, 56, 59, 58, 61, 60, 63, 62, 49, 48, 51, 50, 53, 52, 55, 54, 41, 40, 43, 42, 45, 44, 47, 46, 33, 32, 35, 34, 37, 36, 39, 38, 106, 107, 104, 105, 110, 111, 108, 109, 98, 99, 96, 97, 102, 103, 100
Offset: 0

Views

Author

Antti Karttunen, Aug 20 2014

Keywords

Comments

This is an instance of entanglement permutation, where complementary pair A048724/A065621 is entangled with the same pair in the opposite order: A065621/A048724, with a(1) set to 1.
Note how this is A193231-conjugate of A054429.

Crossrefs

Programs

  • PARI
    a048724(n) = bitxor(n, 2*n);
    a065620(n) = if(n<3, n, if(n%2, -2*a065620((n - 1)/2) + 1, 2*a065620(n/2)));
    a065621(n) = bitxor(n, 2*(n - bitand(n, -n)));
    a(n) = x=a065620(n); if(n<2, n, if(x<0, a065621(1 + a(-x)), a048724(a(x - 1))));
    for(n=0, 100, print1(a(n),", ")) \\ Indranil Ghosh, Jun 07 2017
    
  • Python
    def a048724(n): return n^(2*n)
    def a065620(n): return n if n<3 else 2*a065620(n//2) if n%2==0 else -2*a065620((n - 1)//2) + 1
    def a065621(n): return n^(2*(n - (n & -n)))
    def a(n):
        x=a065620(n)
        return n if n<2 else a065621(1 + a(-x)) if x<0 else a048724(a(x - 1))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 07 2017

Formula

a(0) = 0, a(1) = 1, and for n > 1, if A065620(n) < 0, a(n) = A065621(1+a(-(A065620(n)))), otherwise a(n) = A048724(a(A065620(n)-1)).
Equally:
a(0) = 0, a(1) = 1, and for n > 1, if A010060(n) = 0, a(n) = A065621(1+a(A246159(n))), otherwise a(n) = A048724(a(A246160(n)-1)). [Note how A246159 is an inverse function for A048724, while A246160 is an inverse function for A065621].
As a composition of related permutations:
a(n) = A193231(A234025(n)).
a(n) = A234026(A193231(n)).
a(n) = A193231(A054429(A193231(n))).

A277807 Numbers n such that A048720(n, A065621(n)) is a perfect square, but n is not in A023758.

Original entry on oeis.org

83, 166, 332, 365, 664, 730, 1328, 1460, 2656, 2920, 5312, 5840, 10624, 11680, 21248, 23360, 33051, 42496, 46720, 66102, 84992, 93440, 115785, 132204, 169984, 186880, 231570, 264408, 279099, 339968, 373760, 388731, 463140, 528816, 558198, 679936, 747520, 777462, 926280, 1057632, 1116396, 1359872, 1495040, 1554924, 1677591
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Comments

Not yet proved: Equally, numbers n such that A048720(n, A065621(n)) = k^2 for some k different from n.
If n is included in this sequence, then also 2n is included (and vice versa), thus the sequence is infinite and wholly determined by its odd terms.

Crossrefs

Setwise difference of A277704 \ A023758.
Cf. A277806 (the square roots of the solutions).

A277901 If A010060(n) = 1, a(n) = A065621(A115384(n)), otherwise a(n) = A048724(a(floor(n/2))).

Original entry on oeis.org

1, 2, 3, 7, 6, 5, 4, 13, 9, 10, 14, 15, 11, 8, 12, 25, 23, 27, 26, 30, 31, 28, 18, 17, 21, 22, 29, 19, 24, 20, 16, 49, 43, 57, 50, 45, 55, 52, 46, 34, 61, 62, 33, 59, 36, 54, 56, 51, 41, 42, 63, 47, 58, 39, 44, 37, 53, 40, 38, 60, 35, 32, 48, 97, 83, 125, 98, 75, 103, 100, 86, 119, 109, 110, 89, 107, 92, 114
Offset: 1

Views

Author

Antti Karttunen, Nov 03 2016

Keywords

Comments

a(n) gives the number that is in the same position in array A277820 as where n is located in array A277880.

Examples

			The top left corner of array A277880 is:
   1,  3,  6, 12
   2,  5, 10, 20
   4,  9, 18, 36
   7, 15, 30, 60
   8, 17, 34, 68
while the top left corner of A277820 is:
   1,  3,  5, 15
   2,  6, 10, 30
   7,  9, 27, 45
   4, 12, 20, 60
  13, 23, 57, 75
thus a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 7, a(5) = 6, a(6) = 5, a(7) = 4, a(8) = 13, a(9) = 9, a(12) = 15 and a(15) = 12.
		

Crossrefs

Inverse: A277902.
Related permutations and arrays: A277820, A277880, A277881.

Formula

If A010060(n) = 1 [when n is one of the odious numbers, A000069], then a(n) = A065621(A115384(n)), otherwise a(n) = A048724(a(floor(n/2))).
As a composition of other permutations:
a(n) = A277820(A277881(n)).
Other identities. For all n >= 1:
A010060(a(n)) = A010060(n). [Preserves the parity of binary weight.]
a(A000069(n)) = A065621(n).
a(A003945(n)) = A001317(n).
a(A129771(n)) = A277823(n).
a(2*A129771(n)) = A277825(n).

A325572 Numbers n that have divisor d > 1 such that A048720(A065621(d),n/d) = n.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 64, 65, 66, 68, 70, 72, 74, 75, 76, 78, 80, 82, 84, 86, 88, 90, 92, 93, 94, 96, 98, 100, 102, 104, 105, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 129, 130, 132, 133
Offset: 1

Views

Author

Antti Karttunen, May 10 2019

Keywords

Comments

Equally, numbers n such that there exists natural numbers t > 1 and u >= 1, for which A048720(t,u) = n and A065620(t)*u = n.

Crossrefs

Cf. A048720, A065620, A065621, A325570 (complement).
Union of A005843 (without zero) and A325573 (odd terms).

Programs

A325573 Odd numbers n that have divisor d > 1 such that A048720(A065621(d),n/d) = n.

Original entry on oeis.org

9, 21, 33, 35, 45, 49, 65, 75, 93, 105, 129, 133, 135, 153, 155, 161, 165, 189, 195, 217, 225, 259, 273, 279, 297, 309, 315, 341, 345, 381, 385, 403, 441, 465, 513, 525, 527, 561, 567, 585, 589, 597, 611, 621, 635, 645, 651, 681, 693, 705, 713, 729, 765, 775, 793, 819, 837, 889, 899, 945, 961, 1025, 1029, 1035, 1057, 1065
Offset: 1

Views

Author

Antti Karttunen, May 10 2019

Keywords

Crossrefs

Subsequence of A071904 and of A325572.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    isA325573(n) = ((n%2)&&fordiv(n,d,if(A048720(A065621(n/d),d)==n,return(d
    				
Previous Showing 21-30 of 74 results. Next