cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A066505 f-amicable numbers where f(n) = n+1.

Original entry on oeis.org

36, 62, 168, 326, 9936, 14056, 16198, 19862, 45304, 51910, 82662, 90152, 337688, 388102, 472902, 479672, 1970586, 2353756, 2969288, 3769942, 6319544, 8454886, 12276056, 13125574, 16783976, 17948854, 18818780, 20825882, 21738114, 22479040, 25960468, 31470614
Offset: 1

Views

Author

Joseph L. Pe, Jan 04 2002

Keywords

Comments

f-amicable pairs are defined similarly to f-perfect numbers in A066218. That is, a, b is a f-amicable pair if f(a) = D(b) and f(b) = D(a), where D(n) = sum_{k divides n, k
Pairs are (36,62), (14056,16198), (9936,19862), (45304,51910), (82662,90152) (337688,388102) and (472902,479672). The sequence shows them unbundled, then elements sorted according to size. - R. J. Mathar, Sep 07 2006, Dec 07 2006

Examples

			Proper divisors of 36 = {1, 2, 3, 4, 6, 9, 12, 18}. f applied to these divisors = {2, 3, 4, 5, 7, 10, 13, 19}; their sum = 63. So D(36) = f(62). proper divisors of 62 = {1, 2, 31}. f applied to these divisors = {2, 3, 32}; their sum = 37. So D(62) = f(36). Therefore 36, 62 is an f-amicable pair.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := x + 1; d[x_] := Apply[ Plus, Map[ f, Divisors[ x] ] ] - f[ x]; m = Table[{x, y}, {x, 1, 1000}, {y, 1, 1000}]; Do[a = m[[i, j]]; If[ (a[[1]] < a[[2]]) && (f[a[[1]]] == d[a[[2]]]) && (f[a[[2]]] == d[a[[1]]]), Print[{i, j}]], {i, 1, 1000}, {j, 1, 1000}]

Extensions

More terms from John W. Layman, Nov 11 2002
More terms from R. J. Mathar, Sep 07 2006
a(17)-a(32) from Donovan Johnson, Jun 23 2012

A238765 Numbers k such that if x = Sum_{j|k, j

Original entry on oeis.org

198, 608, 11322, 15450, 17874, 20826, 33894, 41022, 56608, 1259910, 1764414, 3055150, 565344850, 579667086, 907521650
Offset: 1

Author

Paolo P. Lava, Mar 05 2014

Keywords

Comments

A066218 is a subsequence. It lists the fixed points of the transform n -> Sum_{j|n, j

Examples

			Aliquot divisors of 15450 are 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 103, 150, 206, 309, 515, 618, 1030, 1545, 2575, 3090, 5150, 7725. Their respective sigma(k)-k are 0, 1, 1, 1, 6, 8, 9, 6, 42, 43, 49, 1, 222, 106, 107, 109, 630, 842, 951, 649, 4398, 4522, 5171 and their sum is equal to 17874.
Aliquot divisors of 17874 are 1, 2, 3, 6, 9, 18, 27, 54, 331, 662, 993, 1986, 2979, 5958, 8937. Their respective sigma(k)-k are 0, 1, 1, 6, 4, 21, 13, 66, 1, 334, 335, 1998, 1337, 6990, 4343 and their sum is equal to 15450.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,c,i,n;
    for n from 1 to q do a:=sort([op(divisors(n))]); b:=0;
    for i from 1 to nops(a)-1 do b:=b+sigma(a[i])-a[i]; od;
    a:=sort([op(divisors(b))]); c:=0;
    for i from 1 to nops(a)-1 do c:=c+sigma(a[i])-a[i]; od;
    if n=c then print(n); fi; od; end: P(10^6);

Extensions

a(13)-a(15) from Michel Marcus, Mar 07 2014

A259536 Numbers n such that sigma(n) - n = Sum_{k|n, k < n} sigma*(k), where sigma(n) is the sum of the divisors of n and sigma*(k) is the sum of the anti-divisors of k.

Original entry on oeis.org

14, 20, 42, 45, 52, 55, 121, 377, 451, 4331, 9211, 18042, 52093, 58743, 112853, 143498, 170322, 182293, 226118, 289811, 298489, 394067, 400831, 456745, 507678, 541362, 769667, 929582, 1132069, 1150595, 1218361, 1230403, 1262507, 1431109, 1516082, 1875155
Offset: 1

Author

Paolo P. Lava, Jul 08 2015

Keywords

Examples

			Aliquot parts of 14 are 1, 2, 7. Anti-divisors of 7 are [2, 3, 5] while 1 and 2 have no anti-divisors. Finally 1 + 2 + 7 = 2 + 3 + 5 = 10.
Aliquot parts of 20 are 1, 2, 4, 5, 10. Anti-divisors: for 4 is [3], for 5 are [2, 3], for 10 are [3, 4, 7] while 1 and 2 have no anti-divisors. Finally 1 + 2 + 4 + 5 + 10 = 3 + 2 + 3 + 3 + 4 + 7 = 22.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,i,j,k,n;
    for n from 3 to q do a:=sort([op(divisors(n))]); b:=0;
    for k from 2 to nops(a)-1 do i:=0; j:=a[k]; while j mod 2 <> 1 do i:=i+1; j:=j/2; od;
    b:=b+sigma(2*a[k]+1)+sigma(2*a[k]-1)+sigma(a[k]/2^i)*2^(i+1)-6*a[k]-2; od;
    if sigma(n)-n=b then print(n); fi; od; end: P(10^9);
Previous Showing 21-23 of 23 results.