cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A365846 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1+x)^4 ).

Original entry on oeis.org

1, 7, 73, 903, 12281, 177415, 2672377, 41506823, 659972089, 10689904647, 175765581817, 2925998735367, 49219210772473, 835307328307207, 14284937032826873, 245924997499453447, 4258621314671050745, 74128819286282600455, 1296324135131612708857
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+k+2, k)*binomial(4*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(4*(n+1),n-k).
a(n) = (1/(n+1)) * [x^n] ( (1+x)^4 / (1-x)^3 )^(n+1). - Seiichi Manyama, Jul 31 2025

A078990 Triangle arising from (4,2) tennis ball problem, read by rows.

Original entry on oeis.org

1, 1, 2, 3, 1, 4, 10, 16, 22, 1, 6, 21, 52, 105, 158, 211, 1, 8, 36, 116, 301, 644, 1198, 1752, 2306, 1, 10, 55, 216, 678, 1784, 4088, 8144, 14506, 20868, 27230, 1, 12, 78, 360, 1320, 4064, 10896, 25872, 55354, 105704, 183284, 260864, 338444, 1, 14, 105
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2003

Keywords

Comments

Length of row n = 2n+1. Rows have been reversed.

Examples

			Triangle starts:
1;
1, 2,  3;
1, 4, 10, 16,  22;
1, 6, 21, 52, 105, 158, 211;
...
		

Crossrefs

Final diagonal gives A079489. Row sums give A066357(n+1).

Programs

  • PARI
    T(n,k)=if(k<0 || k>2*n,0,if(n<1,k==0,sum(j=0,k,(j+1)*T(n-1,k-j))))

A365848 Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^4 ).

Original entry on oeis.org

1, 9, 122, 1965, 34814, 655290, 12861708, 260312853, 5393696150, 113847928558, 2439377254412, 52919446267698, 1160040801590332, 25655668799151700, 571760925292574640, 12827392114274902629, 289470689505615716070, 6566330844138035042982
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*n+k+4, k)*binomial(4*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(5*n+k+4,k) * binomial(4*(n+1),n-k).

A181145 G.f.: exp( Sum_{n>=1} [Sum_{k=0..2n} C(2n,k)^2*y^k]*x^n/n ) = Sum_{n>=0,k=0..2n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 4, 1, 1, 12, 27, 12, 1, 1, 24, 134, 236, 134, 24, 1, 1, 40, 410, 1540, 2380, 1540, 410, 40, 1, 1, 60, 975, 6260, 18386, 26216, 18386, 6260, 975, 60, 1, 1, 84, 1981, 19320, 91441, 227052, 306495, 227052, 91441, 19320, 1981, 84, 1, 1, 112, 3612, 49672
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2010

Keywords

Comments

Compare g.f. to that of the triangle A034870:
* exp( Sum_{n>=1} [Sum_{k=0..2n} C(2n,k)*y^k]*x^n/n )
which consists of the even numbered rows of Pascal's triangle.

Examples

			G.f.: A(x,y) = 1 + (1+ 4*y+ y^2)*x + (1 + 12*y+ 27*y^2+ 12*y^3+ y^4)*x^2 + (1+ 24*y+ 134*y^2+ 236*y^3+ 134*y^4+ 24*y^5+ y^6)*x^3 +...
The logarithm of the g.f. begins:
log(A(x,y)) = (1 + 2^2*y + y^2)*x
+ (1 + 4^2*y + 6^2*y^2 + 4^2*y^3 + y^4)*x^2/2
+ (1 + 6^2*y + 15^2*y^2 + 20^2*y^3 + 15^2*y^4 + 6^2*y^5 + y^6)*x^3/3
+ (1 + 8^2*y + 28^2*y^2 + 56^2*y^3 + 70^2*y^4 + 56^2*y^5 + 28^2*y^6 + 8^2*y^7 + y^8)*x^4/4 +...
Triangle begins:
1;
1, 4, 1;
1, 12, 27, 12, 1;
1, 24, 134, 236, 134, 24, 1;
1, 40, 410, 1540, 2380, 1540, 410, 40, 1;
1, 60, 975, 6260, 18386, 26216, 18386, 6260, 975, 60, 1;
1, 84, 1981, 19320, 91441, 227052, 306495, 227052, 91441, 19320, 1981, 84, 1;
1, 112, 3612, 49672, 344260, 1312080, 2883562, 3740572, 2883562, 1312080, 344260, 49672, 3612, 112, 1; ...
		

Crossrefs

Cf. A066357 (row sums), A181146 (main diagonal).
Cf. variants: A181143, A181144, A001263, A034870.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,2*m,binomial(2*m,j)^2*y^j)*x^m/m)+O(x^(n+1))),n,x),k,y)}

Formula

Row sums form A066357 (with offset), the number of ordered trees on 2n nodes with every subtree at the root having an even number of edges.

Extensions

Comment and example corrected by Paul D. Hanna, Oct 16 2010
Previous Showing 11-14 of 14 results.