cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A079489 a(n) = (2*4^n*binomial(2*n, n) - binomial(4*n + 1, 2*n)) / (n + 1).

Original entry on oeis.org

1, 3, 22, 211, 2306, 27230, 338444, 4362627, 57788170, 781825066, 10757497972, 150073096238, 2117778107732, 30176799215196, 433586825237912, 6274885068167651, 91383942213277530, 1338275570267001458, 19695358741104824036, 291137841642777382330, 4320734864185863437820
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2003

Keywords

Comments

a(n) is the number of ordered trees on 2n-1 edges in which every subtree of the root (including its rooting edge) has an even number of edges, except for the leftmost subtree which has an odd number of edges (including its rooting edge). - David Callan, Apr 10 2012
a(n) is the number of 2 X 2n Young tableaux with a wall between the first and second row in each even column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021].
Example for a(1)=3:
3 4 2 4 2 3
- - -
1 2, 1 3, 1 4. - Michael Wallner, Mar 09 2022

Crossrefs

Final diagonal of triangle in A078990.

Programs

  • Maple
    a := n -> (2*4^n*binomial(2*n, n) - binomial(4*n + 1, 2*n)) / (n + 1):
    seq(a(n), n = 0..20);  # Peter Luschny, Aug 26 2024
  • Mathematica
    ((Sqrt[2] Sqrt[1 + Sqrt[1 - 16 x]] - Sqrt[1 - 16 x] - 1)/(4 x) + O[x]^20)[[3]] (* Vladimir Reshetnikov, Sep 25 2016 *)
    CoefficientList[Series[-(1 - Sqrt[1 - 4*Sqrt[x]])*(1 - Sqrt[1 + 4*Sqrt[x]])/(4*x), {x,0,50}], x] (* G. C. Greubel, Apr 13 2017 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x*(1-x^2)/(1+x^2)^2+O(x^(2*n+3))),2*n+1))
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,binomial(4*m-1,2*m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Dec 30 2010

Formula

Series reversion of x(1-x^2)/(1+x^2)^2 expanded in odd powers of x. [Previous name.]
If x = y*(1-y^2)/(1+y^2)^2 then y = x + 3*x^3 + 22*x^5 + 211*x^7 + 2306*x^9 + ...
G.f. A(x) satisfies x*A(x^2) = (C(x) - C(-x))/(C(x) + C(-x)) where C(x) is g.f. of the Catalan numbers A000108.
a(n) = Sum_{k=0..2n} (-1)^k * A000108(2*n-k) * A000108(k). - David Callan, Aug 16 2006
a(n) = ((2^(4n+2))/Gamma(1/2)) * ((Gamma(n+1/2)/(2*Gamma(n+2))) - Gamma(2n+3/2)/Gamma(2n+3)). [David Dickson (dcmd(AT)unimelb.edu.au), Nov 10 2009]
G.f.: exp( Sum_{n>=1} C(4n-1,2n)*x^n/n ). - Paul D. Hanna, Dec 30 2010
G.f.: C(sqrt(x))*C(-sqrt(x)) where C(x) is the g.f. for the Catalan numbers A000108. - David Callan, Apr 10 2012
D-finite with recurrence n*(n+1)*(2*n+1)*a(n) -2*n*(32*n^2-32*n+11)*a(n-1) +16*(4*n-5)*(4*n-3)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 29 2012
a(n) ~ (2-sqrt(2))*16^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 20 2013
a(n) = 2^(2*n+1)*Catalan(n) - Catalan(2*n+1) (see Regev). It follows that the 2-adic valuations of a(n) and Catalan(n) are equal. In particular, a(n) is odd iff n is of the form 2^m - 1. - Peter Bala, Aug 02 2016
G.f.: (sqrt(2) * sqrt(1 + sqrt(1-16*x)) - sqrt(1-16*x) - 1)/(4*x). - Vladimir Reshetnikov, Sep 25 2016
G.f. A(x) satisfies A(x^2) = C(x)^2*r(-x*C(x)^2), where C(x) is g.f. of the Catalan numbers A000108, and r(x) is g.f. of the large Schröder numbers A006318. - Alexander Burstein, Nov 21 2019
From Peter Bala, Sep 14 2021: (Start)
A(x) = exp( Sum_{n >= 1} (1/2)*binomial(4*n,2*n)*x^n/n ).
1 + x*A(x) is the o.g.f. of A066357.
The sequence defined by b(n) := [x^n] A(x)^n begins [1, 3, 53, 1056, 22181, 480003, 10588508, 236720424, ...] and satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 3. See A333563. Cf. A060941. (End)
From Peter Bala, Oct 23 2024: (Start)
For integer r and positive integer s, define a sequence {u(n) : n >= 0} by setting u(n) = [x^(s*n)] A(x)^(r*n). We conjecture that the supercongruence u(n*p^k) == u(n*p^(k-1)) (mod p^(3*k)) holds for all primes p >= 5 and for all positive integers n and k.
Let B(x) = 1/x * series_reversion(x*A(x)). Define a sequence {v(n) : n >= 0} by setting v(n) = [x^(s*n)] B(x)^(r*n). We conjecture that the supercongruence v(n*p^k) == v(n*p^(k-1)) (mod p^(3*k)) holds for all primes p >= 5 and for all positive integers n and k. (End)

Extensions

New name by Peter Luschny, Aug 26 2024

A066357 Number of ordered (i.e., planar) trees on 2n edges with every subtree at the root having an even number of edges.

Original entry on oeis.org

1, 1, 6, 53, 554, 6362, 77580, 986253, 12927170, 173452334, 2370742868, 32892031042, 462030186916, 6557906929108, 93909078262808, 1355087936016957, 19684187540818866, 287612514032460070, 4224238030616082948, 62329883931236020470, 923519220367120779820
Offset: 0

Views

Author

Louis Shapiro, Feb 01 2002

Keywords

Comments

Row sums of A078990. First column of A079513.
a(n) is the number of walks from (0,0) to (2n,2n) using steps (0,1) and (1,0) which never stray below the line y=x and which avoid the points (m,m) m odd. - Paul Boddington, Mar 14 2003
Series reversion of Sum_{n>0} -a(n)(-x)^n is g.f. of A005900.
a(n) is the number of linear extensions of the one-level grid poset G[(0^n), (1^(n-1)), (1^(n-1))]. The definition of a one-level grid poset can be found in the Pan links. - Ran Pan, Jul 05 2016
These numbers have the same parity as the Catalan numbers C(n), that is, a(n) is even except when n has the form 2^m - 1. This follows immediately from the formula a(n) = C(2*n+1) + 2*C(2*n) - 2^(2*n + 1)*C(n) given below by Callan. We conjecture that a(n) and C(n) have the same 2-adic valuation (checked up to n = 100). - Peter Bala, Aug 02 2016

Crossrefs

Programs

  • Magma
    [1] cat [(&+[Binomial(4*n,k)*Binomial(3*n-k-2,n-k-1)/n: k in [0..n]]): n in [1..30]]; // G. C. Greubel, Jan 15 2019
    
  • Maple
    gf := (1-sqrt(1-4*z)-sqrt(1+4*z)+sqrt(1-16*z^2))/(z*(sqrt(1-4*z)-sqrt(1+4*z))):s := series(gf, z, 80): for i from 0 to 50 by 2 do printf(`%d,`,coeff(s,z,i)) od: # James Sellers, Feb 11 2002
    a := n -> `if`(n=0,1,binomial(3*n-2,n-1)*hypergeom([1-n,-4*n],[2-3*n], -1)/n): seq(simplify(a(n)),n=0..20); # Peter Luschny, Oct 15 2015
  • Mathematica
    CoefficientList[Series[2/(1 + 4 Sqrt[x]/(Sqrt[1 + 4 Sqrt[x]] - Sqrt[1 - 4 Sqrt[x]])), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    a(n)=local(A); if(n<1,n==0,A=sqrt(1+4*x+O(x^(2*n+2))); A-=subst(A,x,-x); polcoeff(((2*A-8*x)/A^2)^2,2*n))
    
  • PARI
    vector (100, n, n--; if(n<1, 1, sum(k=0, n, binomial(4*n,k)*binomial(3*n-k-2,n-k-1)/n))) \\ Altug Alkan, Oct 07 2015
    
  • Sage
    [1] + [sum(binomial(4*n,k)*binomial(3*n-k-2,n-k-1)/n for k in (0..n)) for n in (1..30)] # G. C. Greubel, Jan 15 2019

Formula

For n>0, a(n) = Sum_{r=1..n} C(2*r-1)*a(n-r). Here C(2*r-1) is a Catalan number (A000108). - Paul Boddington, Mar 14 2003
G.f.: 2/(1+4*sqrt(x)/(sqrt(1+4*sqrt(x))-sqrt(1-4*sqrt(x)))).
D-finite with recurrence a(n)*(2*n-1)*(n+1)n = a(n-1)*(32*n^2 - 64*n + 39)*2*n - a(n-2)*(2*n-3)*(4*n-5)*(4*n-7)*16, n>1.
a(0) = 1,a(n) = (1/n)*Sum_{k=0..n} C(4*n,k)*C(3*n-k-2,n-k-1), n>1. - Paul Barry, Apr 09 2007
a(n) = ((2^(4*n))/Gamma(1/2)) * ((6*(2*n+1)*Gamma(2*n+1/2)/Gamma(2*n+3))-2*Gamma(n+1/2)/Gamma(n+2)). - David Dickson (dcmd(AT)unimelb.edu.au), Nov 10 2009
Convolution of A079489 with itself: (1, 6, 53, 554, ...) = (1, 3, 22, 211, ...)*(1, 3, 22, 211, ...).
Proof. Working with Dyck paths, we must show that Dyck paths of size (semilength) 2n, all of whose components (constituent primitive Dyck paths) have even size, are equinumerous with ordered pairs of nonempty Dyck paths of total size 2n in each of which the first component is of odd size and all other components (if any) are of even size. Given a Dyck path P of the former class, use the first return decomposition to write P (uniquely) as the concatenation of U A_1 A_2 ... A_j O E D Q where U denotes upstep, D denotes downstep, A_1,...,A_j are all primitive Dyck paths of even size with j>=0, O is a primitive Dyck path of odd size, E is a Dyck path of even size, and Q is a Dyck path in which all components are of even size. Then P -> (O A_1 A_2 ... A_j, U E D Q) is the desired bijection. QED - David Callan, Apr 11 2012
a(n) = C(2*n+1) + 2*C(2*n) - 2^(2*n+1)*C(n), where C(n) is the Catalan number A000108. This formula can be obtained by manipulating generating functions. The equivalence of this formula and the Barry (Apr 09 2007) sum can be established by the WZ method with a second-order operator. A combinatorial interpretation of the Barry sum would be nice. - David Callan, Apr 10 2012
a(n) ~ (3-2*sqrt(2)) * 2^(4*n) / (n^(3/2) * sqrt(2*Pi)). - Vaclav Kotesovec, Mar 21 2014
exp( Sum_{n >= 1} binomial(4*n,2*n)*x^n/n ) = 1 + 6*x + 53*x^2 + 554*x^3 + ... is an o.g.f. for this sequence omitting the initial term. See A001448. - Peter Bala, Oct 02 2015
a(n) = binomial(3*n-2,n-1)*hypergeom([1-n,-4*n],[2-3*n],-1)/n for n>=1. - Peter Luschny, Oct 15 2015
a(n) = 3*(2*n+1) /(2*n+2) /(4*n+1) *binomial(4*n+2,2*n+1) -4^n /(2*n+1) *binomial(2*n+2,n+1) [Merlini et al F_n formula] - R. J. Mathar, Oct 01 2021
Showing 1-2 of 2 results.