cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 77 results. Next

A066416 Number of numbers m such that the sum of the anti-divisors of m is n+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 1, 1, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 1, 3, 1, 3, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2
Offset: 1

Views

Author

Jon Perry, Dec 28 2001

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			8 has anti-divisors 1, 3 and 5, whose sum is 9 and 9 has anti-divisors 1, 2 and 6, whose sum is 9 and there are no others. Therefore a(8)=2.
		

Crossrefs

A073931 Numbers n such that the sum of the anti-divisors of n = 2n.

Original entry on oeis.org

77, 1568, 2768, 4775040
Offset: 1

Views

Author

Jason Earls, Sep 03 2002

Keywords

Comments

See A066272 for definition of anti-divisor.
a(5) > 10^10 - Hiroaki Yamanouchi, Mar 18 2015

Crossrefs

Cf. A066417.

Programs

  • Mathematica
    antiDivisorSum[n_] := Total[Select[Range[2, n - 1], Abs[Mod[n, #] - #/2] < 1 &]]
    Select[Range[1, 1600], antiDivisorSum[#] == 2*# &] (* Julien Kluge, Sep 19 2016 *)
  • Python
    from sympy import divisors
    A073931 = [n for n in range(3,10**5) if sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n % d] + [d for d in divisors(2*n+1) if n > d >=2 and n % d]) == 2*n]
    # Chai Wah Wu, Aug 13 2014

A074751 Numbers k such that the sum of the anti-divisors of k = sum of proper divisors (or aliquot parts) of k.

Original entry on oeis.org

1, 4, 44, 260, 1350, 6284, 6954, 13364, 273366, 333546, 466614, 4659934050
Offset: 1

Views

Author

Jason Earls, Sep 06 2002

Keywords

Comments

Integers k such that A066417(k) = A001065(k)
a(13) > 10^10. - Hiroaki Yamanouchi, Mar 18 2015

Crossrefs

Programs

  • PARI
    spd(n) = if( n==0, 0, sigma(n) - n); \\ A001065
    sad(n) = my(k); if(n>1, k=valuation(n, 2); sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2, 0); \\ A066417
    isok(k) = sad(k) == spd(k); \\ Michel Marcus, Mar 30 2025

Extensions

a(12) from Hiroaki Yamanouchi, Mar 18 2015

A074898 Impossible values for sum of anti-divisors of n.

Original entry on oeis.org

1, 6, 7, 9, 11, 15, 17, 20, 21, 25, 26, 27, 29, 31, 33, 35, 37, 38, 43, 44, 45, 47, 49, 51, 53, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 75, 77, 79, 81, 82, 83, 85, 87, 89, 91, 93, 95, 97, 99, 100, 103, 105, 109, 111, 113, 115, 117, 119, 120, 121, 123, 125, 127, 128, 129, 131, 133, 134, 135, 137, 139, 141, 143, 145, 146, 149, 151, 153, 155, 157, 158, 159, 161, 163, 165, 167, 168, 169, 170, 171
Offset: 1

Views

Author

Jason Earls, Sep 14 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Crossrefs

Extensions

More terms from Paolo P. Lava, Jul 06 2011

A093394 a(n) is the GCD of n and the product of the anti-divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 15, 1, 1, 6, 1, 4, 21, 2, 1, 8, 5, 2, 27, 4, 1, 30, 1, 1, 33, 2, 35, 12, 1, 2, 39, 8, 1, 42, 1, 4, 45, 2, 1, 16, 7, 10, 51, 4, 1, 54, 55, 8, 57, 2, 1, 60, 1, 2, 63, 1, 65, 66, 1, 4, 69, 70, 1, 24, 1, 2, 75, 4
Offset: 3

Views

Author

Lior Manor, Mar 28 2004

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			The anti-divisors of 18 are 4, 5, 7, 12. Hence a(18) = gcd(4*5*7*12, 18) = 6.
		

Crossrefs

Formula

a(n) = gcd(n, A091507(n)).

A093395 Numerators of n divided by the product of the anti-divisors of n.

Original entry on oeis.org

3, 4, 5, 3, 7, 8, 3, 5, 11, 3, 13, 7, 1, 16, 17, 3, 19, 5, 1, 11, 23, 3, 5, 13, 1, 7, 29, 1, 31, 32, 1, 17, 1, 3, 37, 19, 1, 5, 41, 1, 43, 11, 1, 23, 47, 3, 7, 5, 1, 13, 53, 1, 1, 7, 1, 29, 59, 1, 61, 31, 1, 64, 1, 1, 67, 17, 1, 1, 71, 3, 73, 37, 1, 19
Offset: 3

Views

Author

Lior Manor, Mar 28 2004

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			The anti-divisors of 18 are 4, 5, 7, 12. Hence a(18) = 18/GCD(4*5*7*12, 18) = 3.
		

Crossrefs

Cf. A066417, A091507, A093394, A093396 (denominators).

Formula

a(n) = n/GCD(n, A091507(n)) = n/A093394(n)

Extensions

Name changed by Franklin T. Adams-Watters, Aug 21 2013

A191581 Numbers whose sum of their anti-divisors divides the sum of their divisors.

Original entry on oeis.org

3, 6, 11, 22, 30, 33, 65, 82, 117, 218, 354, 483, 508, 537, 3276, 6430, 21541, 117818, 130356, 753612, 1007328, 2113416, 2379540, 3589646, 7231219, 7346148, 8515767, 13050345, 20199648, 34424166, 44575896, 47245905, 50414595, 104335023, 217728002, 1217532421
Offset: 1

Views

Author

Paolo P. Lava, Jun 07 2011

Keywords

Comments

A161917 is a subsequence of this sequence.

Examples

			6-> sum divisors=sigma(6)=12; sum anti-divisors=4; 12/4=3.
30-> sum divisors=sigma(30)=72; sum anti-divisors=4+12+20=36; 72/36=2.
		

Crossrefs

Programs

Formula

{n: A066417(n) | A000203(n)}. - R. J. Mathar, Oct 01 2011

Extensions

a(21)-a(36) from Donovan Johnson, Jun 24 2012

A192266 Decimal expansion of Sum_{k >= 1} 1/k^sigma_*(k) where sigma_*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

2, 1, 2, 7, 8, 2, 7, 8, 0, 2, 4, 2, 5, 0, 7, 1, 7, 8, 3, 0, 4, 4, 1, 3, 1, 7, 4, 6, 9, 6, 6, 0, 9, 9, 2, 6, 2, 4, 5, 0, 7, 7, 3, 5, 3, 0, 8, 3, 4, 1, 9, 8, 9, 7, 3, 0, 9, 4, 3, 0, 6, 8, 3, 7, 1, 7, 1, 8, 7, 1, 8, 2, 8, 4, 3, 0, 3, 2, 7, 1, 4, 2, 5, 6, 4, 8
Offset: 1

Views

Author

Paolo P. Lava, Jun 27 2011

Keywords

Comments

Continued fraction (2,7,1,4,1,1,1,6,4,1,11,1,2...).

Examples

			1/1^sigma*(1)+ 1/2^sigma*(2) + 1/3^sigma*(3) + 1/4^sigma*(4) + 1/5^sigma*(5) + 1/6^sigma*(6) + ... = 1/1^0 + 1/2^0 + 1/3^2 + 1/4^3 + 1/5^5 + 1/6^4 + ... = 2.12782780242507..
		

Crossrefs

Programs

Extensions

Corrected and edited by R. J. Mathar, Jun 27 2011

A192269 Super anti-abundant numbers.

Original entry on oeis.org

1, 3, 4, 5, 7, 13, 17, 32, 38, 45, 67, 77, 143, 203, 247, 473, 682, 787, 1463, 2678, 2992, 3465, 8662, 10868, 16065, 25987, 26163, 29452, 112613, 157658, 202702, 233415, 363825, 795217, 1148647, 1914412, 2139637, 5743237, 5743238, 8393963, 11869357, 64353712
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2011

Keywords

Comments

Like A004394 but using anti-divisors. A super anti-abundant number is a number n such that sigma*(n)/n > sigma*(k)/k for all kA066417(n)/n.

Examples

			1 -> sigma*(1)/1 = 0/1 = 0;
3 -> sigma*(3)/3 = 2/3 = 0.6666...;
4 -> sigma*(4)/4 = 3/4 = 0.75;
5 -> sigma*(5)/5 = 5/5 = 1;
7 -> sigma*(7)/7 = 10/7 = 1.4285...; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(n) local a,k,i,j,s; s:=0; print(1);
    for i from 3 to n do
    k:=0; j:=i; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; a:=sigma(2*i+1)+sigma(2*i-1)+sigma(i/2^k)*2^(k+1)-6*i-2;
    if a/i>s then s:=a/i; print(i); fi; od; end: P(50000);

Extensions

a(26)-a(42) from Donovan Johnson, Sep 07 2011

A192818 Numbers which are both deficient (A005100) and anti-deficient (A192267).

Original entry on oeis.org

1, 2, 3, 4, 9, 16, 19, 26, 29, 34, 44, 51, 61, 64, 69, 79, 89, 106, 131, 134, 139, 141, 146, 159, 166, 169, 191, 194, 201, 209, 211, 219, 226, 236, 239, 244, 251, 254, 261, 271, 274, 289, 296, 299, 309, 316, 321, 334, 339, 341, 344, 349, 359, 376, 381, 386
Offset: 1

Views

Author

Jonathan Vos Post, Jul 10 2011

Keywords

Examples

			24 is anti-deficient because its anti-divisors are 7, 16 and their sum is 23 < 24.  26 is deficient because its proper divisors are 1, 2, 13 which sum to 16 and 16 < 26.
		

Crossrefs

Programs

Formula

A005100 INTERSECTION A192267.

Extensions

More terms and inserted a(1)=1 from Nathaniel Johnston, Sep 26 2011
Previous Showing 21-30 of 77 results. Next