cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A343824 Sum of the elements in all pairs (d1, d2) of divisors of n such that d1<=d2, d1|n, d2|n, and d1 + d2 <= n.

Original entry on oeis.org

0, 2, 2, 9, 2, 24, 2, 28, 12, 32, 2, 96, 2, 40, 36, 75, 2, 126, 2, 132, 44, 56, 2, 288, 18, 64, 52, 168, 2, 336, 2, 186, 60, 80, 52, 495, 2, 88, 68, 400, 2, 432, 2, 240, 198, 104, 2, 760, 24, 258, 84, 276, 2, 528, 68, 512, 92, 128, 2, 1296, 2, 136, 246, 441, 76, 624, 2, 348
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 30 2021

Keywords

Comments

If n is prime, then a(n) = 2.

Examples

			a(7) = 2; There is one divisor pair of 7 whose sum is less than or equal to 7: (1,1). The sum is then 1+1 = 2.
a(9) = 12; The divisor pairs of 9 whose sum is less than or equal to 9 are: (1,1), (1,3) and (3,3). The sum of the coordinates is then (1+1) + (1+3) + (3+3) = 12.
		

Crossrefs

Cf. A066446.

Programs

  • Mathematica
    Table[Sum[Sum[(i + k) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k}], {k, Floor[n/2]}], {n, 80}]
  • PARI
    a(n) = sumdiv(n, d1, sumdiv(n, d2, if ((d1 <= d2) && (d1+d2 <= n), d1+d2))); \\ Michel Marcus, May 01 2021

Formula

a(n) = Sum_{k=1..floor(n/2)} Sum_{i=1..k} c(n/k) * c(n/i) * (i+k), where c(n) = 1 - ceiling(n) + floor(n).

A337524 a(n) = d(n) * (d(n) - 1), where d is the number of divisors of n (A000005).

Original entry on oeis.org

0, 2, 2, 6, 2, 12, 2, 12, 6, 12, 2, 30, 2, 12, 12, 20, 2, 30, 2, 30, 12, 12, 2, 56, 6, 12, 12, 30, 2, 56, 2, 30, 12, 12, 12, 72, 2, 12, 12, 56, 2, 56, 2, 30, 30, 12, 2, 90, 6, 30, 12, 30, 2, 56, 12, 56, 12, 12, 2, 132, 2, 12, 30, 42, 12, 56, 2, 30, 12, 56, 2, 132, 2, 12, 30, 30
Offset: 1

Views

Author

Wesley Ivan Hurt, Aug 30 2020

Keywords

Comments

Number of distinct nonsquare m X n matrices such that m and n are divisors of n.

Crossrefs

Cf. A000005 (tau).
Equals twice A066446.

Programs

  • Mathematica
    Table[DivisorSigma[0, n]^2 - DivisorSigma[0, n], {n, 100}]
    #(#-1)&/@DivisorSigma[0,Range[100]] (* Harvey P. Dale, Nov 03 2022 *)

A373113 For n >= 1, a(n) = Sum_{i = n..(n + A000005(n) - 1)} i.

Original entry on oeis.org

1, 5, 7, 15, 11, 30, 15, 38, 30, 46, 23, 87, 27, 62, 66, 90, 35, 123, 39, 135, 90, 94, 47, 220, 78, 110, 114, 183, 59, 268, 63, 207, 138, 142, 146, 360, 75, 158, 162, 348, 83, 364, 87, 279, 285, 190, 95, 525, 150, 315, 210, 327, 107, 460, 226, 476, 234, 238, 119, 786, 123
Offset: 1

Views

Author

Ctibor O. Zizka, May 25 2024

Keywords

Comments

A005385 is a subsequence.

Examples

			n = 4: A000005(4) = 3, 4 + 5 + 6 = 15, thus a(4) = 15.
n = 5: A000005(5) = 2, 5 + 6 = 11, thus a(5) = 11.
n = 6: A000005(6) = 4, 6 + 7 + 8 + 9 = 30, thus a(6) = 30.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d = DivisorSigma[0, n]}, d*(d-1)/2 + n*d]; Array[a, 60] (* Amiram Eldar, May 25 2024 *)
  • PARI
    a(n) = my(d=numdiv(n)); n*d + d*(d-1)/2; \\ Michel Marcus, May 28 2024

Formula

a(n) = A066446(n) + n*A000005(n).
a(n) = A000005(n)*(A000005(n) - 1)/2 + n*A000005(n).
Previous Showing 11-13 of 13 results.