cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A378350 Continued fraction expansion of the base 9 Champernowne constant.

Original entry on oeis.org

0, 7, 8, 1, 10222, 1, 1, 1, 1, 1, 12, 1, 1, 1, 145, 1, 13127841267973253934598674824559230051317913195904874825561053745645554655306632773083671838234108227370808367172269493508107, 1, 7, 3, 1, 1, 1, 2, 2, 15, 3, 2, 1, 3, 2, 1, 1, 7, 4, 1, 4, 1, 1, 3, 3, 1, 1
Offset: 0

Views

Author

Joshua Searle, Dec 14 2024

Keywords

Crossrefs

Cf. A031076 (base 9 expansion), A378333 (decimal expansion).
Other continued fractions: A066717, A077772, A378345, A378346, A378347, A378348, A378349, A030167.

Programs

  • Mathematica
    ContinuedFraction[ChampernowneNumber[9], 100]

A378328 Decimal expansion of the base 4 Champernowne constant.

Original entry on oeis.org

4, 2, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 6, 5, 7, 6, 4, 5, 5, 6, 5, 7, 1, 4, 2, 0, 1, 6, 1, 9, 8, 5, 0, 9, 5, 5, 4, 6, 2, 3, 8, 9, 6, 7, 2, 3, 0, 4, 1, 0, 6, 8, 2, 7, 9, 1, 6, 3, 5, 1, 7, 2, 5, 8, 7, 5, 5, 3, 5, 3, 9, 9, 3, 4, 4, 9, 2, 3, 1, 5, 4, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 4 and then converted into base 10.
This constant is 4-normal.

Examples

			0.426111111111111065764556571420161985095546238967230410682791635172587553...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[4], 10, 100]]

A378329 Decimal expansion of the base 5 Champernowne constant.

Original entry on oeis.org

3, 1, 0, 7, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 9, 6, 3, 0, 3, 3, 3, 1, 1, 6, 0, 4, 9, 4, 4, 8, 4, 9, 1, 1, 5, 5, 0, 4, 6, 8, 2, 6, 2, 2, 2, 6, 8, 4, 7, 0, 3, 4, 3, 3, 9, 2, 2, 9, 9, 6, 8, 7, 8, 2, 5, 1, 8, 2, 1, 0, 1
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 5 and then converted into base 10.
This constant is 5-normal.

Examples

			0.310736111111111111111111111110963033311604944849115504682622268470343392...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[5], 10, 100]]

A378330 Decimal expansion of the base 6 Champernowne constant.

Original entry on oeis.org

2, 3, 9, 8, 6, 2, 6, 8, 5, 8, 1, 5, 0, 6, 6, 7, 6, 7, 4, 4, 7, 7, 1, 9, 8, 2, 8, 6, 7, 2, 2, 0, 9, 6, 2, 4, 5, 9, 0, 5, 7, 6, 9, 7, 1, 5, 2, 9, 3, 5, 0, 2, 1, 3, 7, 6, 0, 6, 9, 3, 1, 9, 5, 6, 3, 1, 5, 7, 6, 5, 8, 3, 4, 3, 7, 7, 5, 4, 8, 3, 0, 5, 0, 7, 8, 0, 4
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 6 and then converted into base 10.
This constant is 6-normal.

Examples

			0.239862685815066767447719828672209624590576971529350213760693195631576583...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[6], 10, 100]]

A378331 Decimal expansion of the base 7 Champernowne constant.

Original entry on oeis.org

1, 9, 4, 4, 3, 5, 5, 3, 5, 0, 8, 6, 2, 4, 0, 5, 2, 1, 4, 7, 5, 8, 4, 0, 0, 9, 3, 0, 8, 2, 9, 0, 8, 5, 7, 6, 4, 5, 2, 9, 3, 2, 9, 7, 1, 0, 5, 0, 4, 2, 2, 1, 1, 2, 4, 7, 9, 5, 8, 8, 5, 3, 1, 2, 3, 3, 6, 7, 9, 0, 8, 8, 7, 3, 9, 4, 0, 3, 5, 6, 6, 3, 9, 7, 0, 8, 5
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 7 and then converted into base 10.
This constant is 7-normal.

Examples

			0.194435535086240521475840093082908576452932971050422112479588531233679088...
		

Crossrefs

(base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[7], 10, 100]]

A378332 Decimal expansion of the base 8 Champernowne constant.

Original entry on oeis.org

1, 6, 3, 2, 6, 4, 8, 1, 2, 1, 0, 5, 2, 1, 6, 7, 9, 7, 3, 6, 7, 0, 9, 4, 9, 8, 6, 1, 4, 2, 6, 0, 5, 1, 9, 0, 2, 2, 4, 2, 3, 7, 8, 4, 3, 2, 8, 5, 4, 6, 2, 3, 3, 3, 0, 8, 1, 3, 8, 0, 7, 0, 0, 4, 2, 8, 3, 1, 9, 4, 7, 5, 9, 3, 8, 5, 2, 3, 5, 5, 7, 5, 7, 1, 1, 7, 6
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 8 and then converted into base 10.
This constant is 8-normal.

Examples

			0.163264812105216797367094986142605190224237843285462333081380700428319475...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[8], 10, 100]]

A378333 Decimal expansion of the base 9 Champernowne constant.

Original entry on oeis.org

1, 4, 0, 6, 2, 4, 9, 7, 6, 1, 1, 9, 6, 9, 6, 7, 8, 2, 4, 7, 9, 6, 6, 9, 0, 0, 8, 9, 3, 5, 6, 6, 3, 1, 8, 3, 2, 6, 5, 4, 5, 7, 0, 8, 3, 2, 4, 6, 8, 2, 8, 4, 8, 6, 6, 5, 7, 5, 5, 5, 1, 7, 1, 2, 7, 5, 4, 1, 4, 9, 1, 4, 8, 7, 8, 1, 8, 5, 4, 9, 5, 2, 4, 3, 6, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 9 and then converted into base 10.
This constant is 9-normal.

Examples

			0.140624976119696782479669008935663183265457083246828486657555171275414914...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[9], 10, 100]]

A244331 Number of binary digits in the high-water marks of the terms of the continued fraction of the base-2 Champernowne constant.

Original entry on oeis.org

0, 1, 3, 9, 23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, 65505, 131039, 262109, 524251, 1048537, 2097111, 4194261, 8388563, 16777169
Offset: 1

Views

Author

John K. Sikora, Jun 27 2014

Keywords

Comments

Conjecture: partial sums of A296965 (equivalent to observation about A183155 below). - Sean A. Irvine, Jul 16 2022

Crossrefs

Programs

  • Ruby
    puts (4..24).collect{|n| 2**n-2*n+1}
    
  • Ruby
    puts (4..24).collect {|n| (1..n).inject(0) {|sum, m| sum+m*2**(m-1)}-n-2*((1..(n-1)).inject(0) {|sum1, m1| sum1+m1*2**(m1-1)}-(n-1))-3*n+4}

Formula

It appears that for n >= 4, a(n) = 2^n - 2*n + 1 = A183155(n-1).
Also it appears that if we define NCD(N) = (Sum_{m=1..N} m*2^(m-1)) - N, then for n >= 4, a(n) = NCD(n) - 2*NCD(n-1) - 3*n + 4.

A066718 Incrementally largest terms in the continued fraction for the "binary" Champernowne constant.

Original entry on oeis.org

0, 1, 6, 298, 4534532, 4682854730443938, 21178658483534445867705807931242133, 1784182521628823878390282782427911592097785568614928986384139293902055110
Offset: 1

Views

Author

Robert G. Wilson v, Jan 14 2002

Keywords

Crossrefs

Cf. A066717.

Programs

  • Mathematica
    a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 10^4} ]; b = ContinuedFraction[ N[ FromDigits[ {Flatten[a], 0}, 2], 7500]]; c = -1; d = {}; Do[If[b[[n]] > c, c = b[[n]]; d = Append[d, c]], {n, 1, 4400}]; d
Previous Showing 11-19 of 19 results.