cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A084239 Rank of K-groups of Furstenberg transformation group C*-algebras of n-torus.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 13, 20, 32, 52, 90, 152, 268, 472, 845, 1520, 2766, 5044, 9277, 17112, 31724, 59008, 110162, 206260, 387282, 729096, 1375654, 2601640, 4929378, 9358944, 17797100, 33904324, 64678112, 123580884, 236413054, 452902072
Offset: 0

Views

Author

Kamran Reihani (reyhan_k(AT)modares.ac.ir), Jun 21 2003

Keywords

Crossrefs

Cf. A000980.

Programs

  • Maple
    A084239 := proc(n)
        local tt,c ;
        if type(n,'odd') then
            product( 1+t^(i-(n+1)/2),i=1..n) ;
        else
            (1+t^(1/2))*product( 1+t^(i-(n+1)/2),i=1..n) ;
        end if;
        tt := expand(%) ;
        for c in tt do
            if c = lcoeff(c) then
                return c ;
            end if;
        end do:
    end proc: # R. J. Mathar, Nov 13 2016
  • Mathematica
    a[n_] := SeriesCoefficient[If[OddQ[n], 1, 1 + Sqrt[t]]*Product[1 + t^(i - (n + 1)/2), {i, n}], {t, 0, 0}];
    Array[a, 36, 0] (* Jean-François Alcover, Nov 24 2017 *)

Formula

a(n) = constant term of prod(i=1, n, 1+t^(i-.5(n+1))) for odd n and a(n) = constant term of (1+t^(.5))*prod(i=1, n, 1+t^(i-.5(n+1))) for even n.
Sums of antidiagonals of A067059, i.e. a(n) is sum over k of number of partitions of [k(n-k)/2] into up to k parts each no more than n-k. Close to 2^(n+1)*sqrt(6/(Pi*n^3)) and seems to be even closer to something like 2^(n+1)*sqrt(6/(Pi*(n^3+0.9*n^2-0.1825*n+1.5))). - Henry Bottomley, Jul 20 2003

Extensions

More terms from Henry Bottomley, Jul 20 2003

A241810 Number of balanced orbitals over n sectors.

Original entry on oeis.org

1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022
Offset: 0

Views

Author

Peter Luschny, Apr 29 2014

Keywords

Comments

For the combinatorial definitions see A232500. An orbital is balanced if its integral is 0. The integral of an orbital w over n sectors is Sum_{k=1..n} Sum_{i=1..k} w(i) where w(i) are the jumps of the orbital represented by -1, 0, 1.

Crossrefs

Programs

  • Mathematica
    np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--];For[j=Length[z],z[[j]]<=z[[i-1]],j--];Join[Take[z,i-2],{z[[j]]},Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]];o=Table[1,{16}];
    n=0;f=0;Print[1];Print[1];While[n<16,n++;f=1-f;If[OddQ[f*n],Print[0],p=Join[-Take[o,n],{f},Take[o,n-f]];c=0;Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++];p=np[p],{(2*n+1-f)!/(2*n!^2)}];Print[2*c]];n=n-f]
    (* Hans Havermann, May 10 2014 *)
  • Sage
    def A241810(n):
        if n == 0: return 1
        A = 0
        T = [0] if is_odd(n) else []
        for i in (1..n//2):
            T.append(-1); T.append(1)
        for p in Permutations(T):
            P = 0; S = 0
            for k in (0..n-1):
                P += p[k]; S += P
            if S == 0: A += 1
        return A
    [A241810(n) for n in (0..32)]

Formula

a(2*n) = A204459(2, n).
a(2*n+1) = A242087(n).
a(4*n) = A063074(n) = A029895(2*n) = A067059(2*n, 2*n).
a(4*n+2) = 0 for all n (proved by H. Havermann).

Extensions

More terms from Hans Havermann, May 10 2014
a(35), a(36) from Hans Havermann, May 23 2014

A069322 Square array read by antidiagonals of floor[(n+k)^(n+k)/(n^n*k^k)].

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 9, 16, 9, 1, 1, 12, 28, 28, 12, 1, 1, 14, 45, 64, 45, 14, 1, 1, 17, 65, 119, 119, 65, 17, 1, 1, 20, 89, 198, 256, 198, 89, 20, 1, 1, 23, 117, 307, 484, 484, 307, 117, 23, 1, 1, 25, 149, 449, 837, 1024, 837, 449, 149, 25, 1, 1, 28, 184, 629
Offset: 0

Views

Author

Henry Bottomley, Mar 14 2002

Keywords

Comments

T(n,k)*sqrt(3)/(n*k*Pi) provides a rough approximation for A067059.
a(n,k) is an analog of the binomial coefficients over transformations instead of permutations. - Chad Brewbaker, Nov 25 2013

Examples

			Rows start: 1,1,1,1,1,1,...; 1,4,6,9,12,14,...; 1,6,16,28,45,65,...; 1,9,28,64,119,198,...; etc. T(3,5)=floor[8^8/(3^3*5^5)]=floor[16777216 /84375]=floor[198.84...]=198.
		

Crossrefs

Initial columns and rows are A000012 and A060644, main diagonal is A000302.

Programs

  • Mathematica
    t[n_, 0] := 1; t[n_, n_] := 1; t[n_, k_] := Floor[(n^n)/((k^k)*((n - k)^(n - k)))];  Table[t[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(if(k==0, 1, if(k==n,1,floor((n^n)/(( k^k)*((n - k)^(n - k)))))), ", "))) \\ G. C. Greubel, Apr 22 2018
  • Ruby
    def transitorial(n)
        return n**n
    end
    def transnomial(n,k)
           return transitorial(n)/(transitorial(k) *transitorial(n-k))
    end
    0.upto(15) do |i|
       0.upto(i) do |j|
           print transnomial(i,j).to_s + " "
       end
       puts ""
    end # Chad Brewbaker, Nov 25 2013
    

Formula

a(n,k) = (n^n) /((k^k)*((n-k)^(n-k))). - Chad Brewbaker, Nov 25 2013
Previous Showing 11-13 of 13 results.