cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A378620 Lesser prime index of twin primes with nonsquarefree mean.

Original entry on oeis.org

2, 5, 7, 17, 20, 28, 35, 41, 43, 45, 49, 52, 57, 64, 69, 81, 83, 98, 109, 120, 140, 144, 152, 171, 173, 176, 178, 182, 190, 206, 215, 225, 230, 236, 253, 256, 262, 277, 286, 294, 296, 302, 307, 315, 318, 323, 336, 346, 373, 377, 390, 395, 405, 428, 430, 444
Offset: 1

Views

Author

Gus Wiseman, Dec 10 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This is a subset of A029707 (twin prime indices). The other twin primes are A068361, so A029707 is the disjoint union of A068361 and A378620.

Crossrefs

The lesser of twin primes is A001359, index A029707 (complement A049579).
The greater of twin primes is A006512, index A107770 (complement appears to be A168543).
A subset of A029707 (twin prime lesser indices).
Prime indices of the primes listed by A061368.
Indices of twin primes with squarefree mean are A068361.
A000040 lists the primes, differences A001223, (run-lengths A333254, A373821).
A005117 lists the squarefree numbers, differences A076259.
A006562 finds balanced primes.
A013929 lists the nonsquarefree numbers, differences A078147.
A014574 is the intersection of A006093 and A008864.
A038664 finds the first position of a prime gap of 2n.
A046933 counts composite numbers between primes.
A120327 gives the least nonsquarefree number >= n.

Programs

  • Mathematica
    Select[Range[100],Prime[#]+2==Prime[#+1]&&!SquareFreeQ[Prime[#]+1]&]
    PrimePi/@Select[Partition[Prime[Range[500]],2,1],#[[2]]-#[[1]]==2&&!SquareFreeQ[Mean[#]]&][[;;,1]] (* Harvey P. Dale, Jul 13 2025 *)

Formula

prime(a(n)) = A061368(n).

A211240 Prime numbers p such that x^2 + x + p produces primes for x = 0..11 but not x = 12.

Original entry on oeis.org

1761702947, 11085833111, 177558051107, 473787509537, 557149355507, 715464238661, 2236159108277, 2751203698151, 3247566894821, 3288002848511, 3424305123047, 3490420408691, 3729352769561, 3801308473871, 4296903559301, 4656625081181, 4837112125121, 5125165470701
Offset: 1

Views

Author

T. D. Noe, Apr 10 2012

Keywords

Comments

The first term is A164926(12).

Crossrefs

Extensions

a(7)-a(18) from Donovan Johnson, Apr 16 2012

A382766 Odd primes p such that p + 4, p + 6 and p + 8 are composite.

Original entry on oeis.org

113, 137, 139, 179, 181, 197, 199, 211, 239, 241, 281, 283, 293, 317, 337, 409, 419, 421, 467, 509, 521, 523, 547, 577, 617, 619, 631, 659, 661, 691, 709, 773, 787, 797, 809, 811, 827, 829, 839, 863, 887, 919, 953, 997, 1019, 1021, 1039, 1049, 1051, 1069
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    P:= select(isprime,{seq(i,i=3..10008,2)}):
    R:= P minus (P -~ 4) minus (P -~ 6) minus (P -~ 8):
    sort(convert(R,list)); # Robert Israel, Apr 28 2025
  • Mathematica
    Select[Table[
      Module[{p = 2, q},
       While[True, q = 2 n - p; If[PrimeQ[p] && PrimeQ[q], Break[]];
        p = NextPrime[p]]; If[p == 11, q, Nothing]], {n, 2, 1000}], # =!=
       Nothing &]
  • PARI
    isok(p) = (p%2) && isprime(p) && !isprime(p+4) && !isprime(p+6) && !isprime(p+8); \\ Michel Marcus, Apr 07 2025

A373828 Run-sums (differing by 0) of run-lengths (differing by 2) of odd primes.

Original entry on oeis.org

3, 4, 1, 2, 1, 2, 2, 2, 1, 2, 4, 4, 3, 4, 4, 6, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 10, 4, 4, 2, 7, 2, 4, 2, 3, 2, 2, 2, 1, 2, 2, 2, 18, 6, 2, 2, 2, 2, 17, 4, 1, 4, 2, 2, 6, 2, 9, 2, 3, 2, 1, 2, 1, 2, 1, 2, 8, 2, 3, 2, 2, 4, 15, 2, 1, 2, 4, 2, 1, 2, 1, 2, 7, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2024

Keywords

Comments

Run-sums of A251092.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with runs:
{3,5,7}, {11,13}, {17,19}, {23}, {29,31}, {37}, {41,43}, {47}, {53}, ...
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, ...
with runs:
{3}, {2,2}, {1}, {2}, {1}, {2}, {1,1}, {2}, {1}, {2}, {1,1,1,1}, {2,2}, ...
with sums a(n).
		

Crossrefs

Run-sums of A251092.
The run-lengths (instead of run-sums) are A373819, firsts A373825, A373824.
A000040 lists the primes.
A001223 gives first differences of primes.
A027833 gives antirun-lengths of primes > 3 (prepended run-lengths A373820).
A046933 counts composite numbers between primes.
A071148 gives partial sums of odd primes.
A333254 gives run-lengths of first differences of primes.
A373821 gives run-lengths of run-lengths of first differences of odd primes.

Programs

  • Mathematica
    Total/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ], #1+2==#2&]//Most]//Most

A383485 a(n) = 2*(2*(n - 1)! + n + 2) (mod n*(n + 2)).

Original entry on oeis.org

1, 4, 3, 12, 5, 16, 0, 20, 31, 24, 11, 28, 0, 32, 49, 36, 17, 40, 0, 44, 67, 48, 0, 52, 54, 56, 85, 60, 29, 64, 0, 68, 70, 72, 109, 76, 0, 80, 121, 84, 41, 88, 0, 92, 139, 96, 0, 100, 102, 104, 157, 108, 0, 112, 114, 116, 175, 120, 59, 124, 0, 128, 130, 132, 199, 136, 0, 140
Offset: 1

Views

Author

Giorgos Kalogeropoulos, Apr 28 2025

Keywords

Comments

Fixed points are the lesser of twin primes A001359.
Positions of zeros are primes p such that p + 2 is not a prime A067774.

Crossrefs

Programs

  • Mathematica
    Table[Mod[2(2(n - 1)! + n + 2), n(n + 2)], {n, 68}]

Formula

a(A001359(n)) = n.
a(A067774(n)) = 0.
Previous Showing 41-45 of 45 results.