cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A306535 Number of permutations p of [2n] having no index i with |p(i)-i| = n.

Original entry on oeis.org

1, 1, 9, 265, 14833, 1334961, 176214841, 32071101049, 7697064251745, 2355301661033953, 895014631192902121, 413496759611120779881, 228250211305338670494289, 148362637348470135821287825, 112162153835443422680893595673, 97581073836835777732377428235481
Offset: 0

Views

Author

Alois P. Heinz, Feb 22 2019

Keywords

Comments

Also 0th term of the 2n-th forward differences of n!.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) b(n, k):= `if`(k=0, n!, b(n+1, k-1) -b(n, k-1)) end:
    a:= n-> b(0, 2*n):
    seq(a(n), n=0..23);
    seq(simplify(KummerU(-2*n, -2*n, -1)), n=0..15); # Peter Luschny, May 10 2022
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, n!, b[n + 1, k - 1] - b[n, k - 1]];
    a[n_] := b[0, 2n];
    a /@ Range[0, 23] (* Jean-François Alcover, Apr 02 2021, after Alois P. Heinz *)

Formula

a(n) = A306512(2n,n).
a(n) = (2n)! - A306675(n).
a(n) = KummerU(-2*n, -2*n, -1). - Peter Luschny, May 10 2022

A116854 First differences of the rows in the triangle of A116853, starting with 0.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 11, 3, 4, 6, 53, 11, 14, 18, 24, 309, 53, 64, 78, 96, 120, 2119, 309, 362, 426, 504, 600, 720, 16687, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 148329, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320, 1468457, 148329, 165016, 183822, 205056, 229080, 256320, 287280, 322560, 362880
Offset: 1

Views

Author

Gary W. Adamson, Feb 24 2006

Keywords

Comments

Row n contains the first differences of row n of A116853, starting with T(n,1) = A116853(n,1) - 0.
As in A116853, 0! = 1 is omitted here. - Georg Fischer, Mar 23 2019

Examples

			First few rows of the triangle are:
[1]    1;
[2]    1,   1;
[3]    3,   1,   2;
[4]   11,   3,   4,   6;
[5]   53,  11,  14,  18,  24;
[6]  309,  53,  64,  78,  96, 120;
[7] 2119, 309, 362, 426, 504, 600, 720;
...
For example, row 4 (11, 3, 4, 6) are first differences along row 4 of A116853: ((0), 11, 14, 18, 24).
		

Crossrefs

Cf. A000142 (row sums), A033815 (central terms), A047920, A068106 (with 0!), A055790 (column k=3), A277609 (k=4), A277563 (k=5), A280425 (k=6).

Programs

  • Haskell
    a116854 n k = a116854_tabl !! (n-1) !! (k-1)
    a116854_row n = a116854_tabl !! (n-1)
    a116854_tabl = [1] : zipWith (:) (tail $ map head tss) tss
                   where tss = a116853_tabl
    -- Reinhard Zumkeller, Aug 31 2014
  • Maple
    A116853 := proc(n,k) option remember ; if n = k then n! ; else procname(n,k+1)-procname(n-1,k) ; end if; end proc:
    A116854 := proc(n,k) if k = 1 then A116853(n,1) ; else A116853(n,k) -A116853(n,k-1) ; end if; end proc:
    seq(seq(A116854(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Mar 27 2010
  • Mathematica
    rows = 10;
    rr = Range[rows]!;
    dd = Table[Differences[rr, n], {n, 0, rows - 1}];
    T = Array[t, {rows, rows}];
    Do[Thread[Evaluate[Diagonal[T, -k+1]] = dd[[k, ;; rows-k+1]]], {k, rows}];
    Table[({0}~Join~Table[t[n, k], {k, 1, n}]) // Differences, {n, 1, rows}] // Flatten (* Jean-François Alcover, Dec 21 2019 *)

Formula

T(n,k) = A116853(n,k) - A116853(n,k-1) if k>1.
T(n,1) = A116853(n,1) = A000255(n-1).
Sum_{k=1..n} T(n,1) = n! = A000142(n).

Extensions

Definition made concrete and sequence extended by R. J. Mathar, Mar 27 2010
Previous Showing 21-22 of 22 results.