cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A317643 Expansion of theta_3(q^3)*theta_3(q^4), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation 3*x^2 + 4*y^2 = n.

Examples

			G.f. = 1 + 2*q^3 + 2*q^4 + 4*q^7 + 2*q^12 + 6*q^16 + 4*q^19 + 2*q^27 + 4*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q^3] EllipticTheta[3, 0, q^4], {q, 0, nmax}], q]
    nmax = 100; CoefficientList[Series[QPochhammer[-q^3, -q^3] QPochhammer[-q^4, -q^4]/(QPochhammer[q^3, -q^3] QPochhammer[q^4, -q^4]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(6*k-3))^2*(1 - x^(6*k))*(1 + x^(8*k-4))^2*(1 - x^(8*k)).

A358049 a(1) = 2, a(2) = 3; afterwards a(n) is least new prime > a(n-1) such that a(n-2) + a(n) and a(n-1) + a(n) are semiprimes.

Original entry on oeis.org

2, 3, 7, 19, 67, 127, 151, 271, 463, 823, 883, 991, 1051, 1087, 2011, 2251, 2311, 2371, 2383, 2731, 2803, 2971, 3271, 3391, 3643, 3823, 4111, 4483, 6343, 6379, 6763, 7879, 8443, 9199, 9283, 9643, 10159, 10639, 10867, 10939, 11047, 11299, 11467, 11587, 11971, 12511, 12583, 14071
Offset: 1

Views

Author

Zak Seidov, Oct 27 2022

Keywords

Comments

Aside from the first two terms, all terms are 7 mod 12. - Charles R Greathouse IV, Dec 07 2022

Examples

			2 + 7 = 9 = 3*3 and 3 + 7 = 10 = 2*5 are semiprimes.
		

Crossrefs

Cf. A001358.
Aside from the first two terms, a subsequence of A068229.

Programs

  • Mathematica
    Do[While[MemberQ[s, p] || 2 != PrimeOmega[s[[-2]] + p] || 2 != PrimeOmega[s[[-1]] + p], p = NextPrime[p]]; AppendTo[s, p], {60}]; s
  • PARI
    issp(n) = bigomega(n) == 2; \\ A001358
    lista(nn) = my(va = vector(nn)); va[1] = 2; va[2] = 3; for (n=3, nn, my(p=nextprime(va[n-1]+1)); while (!issp(va[n-2]+p) || !issp(va[n-1]+p), p = nextprime(p+1)); va[n] = p;); va; \\ Michel Marcus, Nov 14 2022

A380877 Primes p where the prime race 12m+1 versus 12m+7 is tied.

Original entry on oeis.org

2, 3, 5, 13, 17, 433, 457, 461
Offset: 1

Views

Author

Ya-Ping Lu, Feb 06 2025

Keywords

Comments

Primes p such that pi_{12,1}(p) = pi_{12,7}(p), where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m). For the first 5 billion primes, pi_{12,7}(p) >= pi_{12,1}(p). If exists, a(9) > 122430513841.

Crossrefs

Programs

  • Mathematica
    s={};Do[p=Prime[pp];If[Length[Select[Prime[Range[pp]],Mod[#,12]==1&]]==Length[Select[Prime[Range[pp]],Mod[#,12]==7&]],AppendTo[s,p]],{pp,100}];s (* James C. McMahon, Mar 03 2025 *)
  • Python
    from sympy import nextprime; p, d = 2, 0
    while p < 500:
        if d == 0: print(p, end = ', ')
        p = nextprime(p); r = p%12
        if r == 7: d += 1
        elif r == 1: d -= 1
Previous Showing 31-33 of 33 results.