cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A321647 Number of distinct row/column permutations of the Ferrers diagram of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 6, 1, 8, 6, 1, 1, 6, 1, 9, 12, 10, 1, 8, 1, 12, 1, 12, 1, 36, 1, 1, 20, 14, 8, 12, 1, 16, 30, 12, 1, 72, 1, 15, 9, 18, 1, 10, 1, 9, 42, 18, 1, 8, 20, 16, 56, 20, 1, 72, 1, 22, 18, 1, 40, 120, 1, 21, 72, 72, 1, 20, 1, 24, 9, 24, 10, 180, 1, 15, 1, 26, 1, 144, 70, 28, 90, 20, 1, 72, 30, 27, 110, 30, 112, 12, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(10) = 6 permutations:
  o o   o o   o     o       o     o
  o       o   o o   o     o o     o
  o       o   o     o o     o   o o
The a(21) = 12 permutations:
  o o   o o   o o   o o   o o   o o   o     o     o       o     o     o
  o o   o o   o     o       o     o   o o   o o   o     o o   o o     o
  o       o   o o   o     o o     o   o o   o     o o   o o     o   o o
  o       o   o     o o     o   o o   o     o o   o o     o   o o   o o
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Permutations[primeMS[n]]]*Length[Permutations[conj[primeMS[n]]]],{n,50}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A321647(n) = (A008480(n) * A008480(A122111(n))); \\ Antti Karttunen, Feb 09 2019

Formula

a(n) = A008480(n) * A008480(A122111(n)) = A008480(n) * A321648(n).

Extensions

More terms from Antti Karttunen, Feb 09 2019

A321654 Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with distinct row sums and distinct column sums.

Original entry on oeis.org

1, 1, 1, 13, 13, 45, 681, 885, 2805, 8301, 237213
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(3) = 13 matrices:
  [3] [2 1] [1 2]
.
  [2] [2 0] [1 1] [1 1] [1] [1 0] [1 0] [0 2] [0 1] [0 1]
  [1] [0 1] [1 0] [0 1] [2] [1 1] [0 2] [1 0] [2 0] [1 1]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@Total/@prs2mat[#],UnsameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5}]

A365961 Number of (0,1)-matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums.

Original entry on oeis.org

1, 1, 4, 19, 127, 967, 9063, 94595, 1139708, 15118010, 223571836, 3597458356, 63233950081, 1197193320701, 24418765771835, 532015160784016, 12363381055074017, 304754656068754421, 7952728315095555279, 218848562411197549582, 6338152295627215890669, 192627799720153909693048
Offset: 0

Views

Author

Ludovic Schwob, Sep 23 2023

Keywords

Comments

Let f(n) = number of ordered coprime factorizations of n (A325446(n)); a(n) = sum of f(k) over all terms k in A025487 that have n factors.

Examples

			The a(3) = 19 matrices:
  [1 1 1]
.
  [1 1] [1 1] [1 1 0] [1 0 1] [0 1 1]
  [1 0] [0 1] [0 0 1] [0 1 0] [1 0 0]
.
  [1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0]
  [1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1]
  [1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1]
.
  [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • PARI
    R(n,k)={Vec(-1 + 1/prod(j=1, k, 1 - binomial(k,j)*x^j + O(x*x^n)))}
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023

Extensions

Terms a(13) and beyond from Andrew Howroyd, Sep 23 2023
Previous Showing 11-13 of 13 results.