cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A182073 Square array read by antidiagonals: T(n,k) = n!*k! / (floor(n/2)! * floor(k/2)! * floor((n+k)/2)!).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 6, 2, 2, 6, 6, 3, 2, 3, 6, 30, 6, 6, 6, 6, 30, 20, 10, 4, 6, 4, 10, 20, 140, 20, 20, 12, 12, 20, 20, 140, 70, 35, 10, 15, 6, 15, 10, 35, 70, 630, 70, 70, 30, 30, 30, 30, 70, 70, 630, 252, 126, 28, 42, 12, 30, 12, 42, 28, 126, 252
Offset: 0

Views

Author

Peter Bala, Apr 10 2012

Keywords

Comments

Compare with A068555 whose entries are given by (2*n)!*(2*k)!/(n!*k!*(n+k)!). See also A211226.

Examples

			As a square array
.n\k.|...0....1....2....3....4....5....6...
= = = = = = = = = = = = = = = = = = = = = =
..0..|...1....1....2....6....6...30...20...
..1..|...1....1....2....3....6...10...20...
..2..|...2....2....2....6....4...20...10...
..3..|...6....3....6....6...12...15...30...
..4..|...6....6....4...12....6...30...12...
..5..|..30...10...20...15...30...30...60...
..6..|..20...20...10...30...12...60...20...
...
Formatted as a triangle
.n\k.|...0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = = =
..0..|...1
..1..|...1....1
..2..|...2....1....2
..3..|...6....2....2....6
..4..|...6....3....2....3....6
..5..|..30....6....6....6....6...30
..6..|..20...10....4....6....4...10...20
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := n!*k!/(Floor[n/2]!*Floor[k/2]!*Floor[(n + k)/2]!);
    TableForm[Table[T[n, k], {n, 0, 5}, {k, 0, 10}]]
    Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* G. C. Greubel, Aug 20 2017 *)

Formula

That T(n,k) is an integer follows from the formulas:
T(2*n,2*k) = (2*n)!*(2*k)!/(n!*k!*(n+k)!) = A068555(n,k);
T(2*n,2*k+1) = (2*n)!*(2*k+1)!/(n!*k!*(n+k)!) = (2*k+1)*A068555(n,k);
T(2*n+1,2*k) = (2*n+1)!*(2*k)!/(n!*k!*(n+k)!) = (2*n+1)*A068555(n,k);
T(2*n+1,2*k+1) = (2*n+1)!*(2*k+1)!/(n!*k!*(n+k+1)!) = (2*k+1)*A135573(n,k).

A182411 Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.

Original entry on oeis.org

1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0

Views

Author

Bruno Berselli, Apr 27 2012

Keywords

Comments

This is a companion to the triangle A068555.
Row sum is 2*A132310(n-1) + A000984(n) for n>0, where A000984(n) = T(n,0) = T(n,n). Also:
T(n,1) = -A002420(n+1).
T(n,2) = A002421(n+2).
T(n,3) = -A002422(n+3) = 2*A007272(n).
T(n,4) = A002423(n+4).
T(n,5) = -A002424(n+5).
T(n,6) = A020923(n+6).
T(n,7) = -A020925(n+7).
T(n,8) = A020927(n+8).
T(n,9) = -A020929(n+9).
T(n,10) = A020931(n+10).
T(n,11) = -A020933(n+11).

Examples

			Triangle begins:
      1;
      2,    2;
      6,    4,    6;
     20,   10,   12,   20;
     70,   28,   28,   40,   70;
    252,   84,   72,   90,  140,  252;
    924,  264,  198,  220,  308,  504,  924;
   3432,  858,  572,  572,  728, 1092, 1848,  3432;
  12870, 2860, 1716, 1560, 1820, 2520, 3960,  6864, 12870;
  48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620;
  ...
Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
		

References

  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.

Crossrefs

Programs

  • Magma
    [Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
  • Mathematica
    Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]
Previous Showing 11-12 of 12 results.