cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A329353 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329352(i) = A329352(j) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 12, 18, 19, 2, 20, 2, 21, 22, 23, 24, 25, 2, 26, 27, 28, 2, 29, 2, 30, 31, 32, 2, 33, 7, 34, 35, 25, 2, 36, 27, 37, 38, 39, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 53, 54, 2, 55, 56, 57, 2, 58, 59, 60, 61, 62, 2, 63, 64, 65, 66, 67, 68, 69, 2, 70, 71, 72, 2, 73, 2, 49, 74
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Comments

Restricted growth sequence transform of A329352.
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A069359(i) = A069359(j).

Crossrefs

Cf. also A329351.
Differs from A319682 for the first time at n=254, where a(254)=123, while A319682(254)=184.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A329352(n) = { my(m=1); fordiv(n,d,if(isprime(n/d), m *= A019565(d))); (m); };
    v329353 = rgs_transform(vector(up_to, n, A329352(n)));
    A329353(n) = v329353[n];

A342921 a(n) = A003415(A019565(n)).

Original entry on oeis.org

0, 1, 1, 5, 1, 7, 8, 31, 1, 9, 10, 41, 12, 59, 71, 247, 1, 13, 14, 61, 16, 87, 103, 371, 18, 113, 131, 493, 167, 719, 886, 2927, 1, 15, 16, 71, 18, 101, 119, 433, 20, 131, 151, 575, 191, 837, 1028, 3421, 24, 191, 215, 859, 263, 1241, 1504, 5153, 311, 1623, 1934, 6871, 2556, 10117, 12673, 40361, 1, 19, 20, 91, 22, 129
Offset: 0

Views

Author

Antti Karttunen, Apr 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[#, 2], 1]] &, 70, 0] (* Michael De Vlieger, Apr 08 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A342921(n) = A003415(A019565(n));

Formula

a(n) = A003415(A019565(n)) = A069359(A019565(n)).
a(n) = A327860(A276156(n)) = A329029(A276156(n)) = A342002(A276156(n)).

A346469 a(n) = A340070(A276086(n)).

Original entry on oeis.org

0, 1, 1, 5, 3, 3, 1, 7, 8, 31, 3, 3, 5, 5, 5, 5, 120, 15, 25, 25, 50, 25, 75, 75, 125, 125, 125, 125, 750, 375, 1, 9, 10, 41, 3, 3, 12, 59, 71, 247, 3, 3, 5, 5, 5, 5, 15, 15, 50, 25, 25, 25, 75, 75, 375, 125, 125, 125, 375, 375, 7, 7, 7, 7, 210, 21, 7, 7, 7, 7, 21, 21, 420, 35, 35, 35, 7455, 105, 175, 175, 175, 3325
Offset: 0

Views

Author

Antti Karttunen, Jul 21 2021

Keywords

Crossrefs

Programs

  • PARI
    A346469(n) = { my(s=0, t=0, m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p^e); s += (1/p); t += (e/p)); n = n\p; p = nextprime(1+p)); (gcd(s,t)*m); };

Formula

a(n) = A340070(A276086(n)) = gcd(A327860(n), A329029(n)).
For n >= 1, a(n) = A327860(n) / A345930(n).

A348219 a(n) = tau(n) - omega(n) + n * Sum_{p|n, p prime} 1/p.

Original entry on oeis.org

1, 2, 2, 4, 2, 7, 2, 7, 5, 9, 2, 14, 2, 11, 10, 12, 2, 19, 2, 18, 12, 15, 2, 26, 7, 17, 12, 22, 2, 36, 2, 21, 16, 21, 14, 37, 2, 23, 18, 34, 2, 46, 2, 30, 28, 27, 2, 48, 9, 39, 22, 34, 2, 51, 18, 42, 24, 33, 2, 71, 2, 35, 34, 38, 20, 66, 2, 42, 28, 64, 2, 70, 2, 41, 44, 46
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 07 2021

Keywords

Comments

For each divisor d of n, add n/d if d is prime, otherwise add 1. For example, a(9) = 5 can be found using its divisors 1,3,9 to get 1 + 9/3 + 1 = 5.
If p is prime, then a(p) = 2 since we have a(p) = tau(p) - omega(p) + p/p = 2 - 1 + 1 = 2.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} (n/d)^c(d), where c is the prime characteristic (A010051).
a(n) = A000005(n) - A001221(n) + A069359(n).
a(prime(n)) = 2.
From Wesley Ivan Hurt, Jul 21 2025: (Start)
a(n) = Sum_{d|n} (c(d) + phi(d)*omega(n/d)), where c = A005171.
a(n) = A007503(n) - A386438(n). (End)

A322068 a(n) = (1/2)*Sum_{p prime <= n} floor(n/p) * floor(1 + n/p).

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 10, 11, 15, 18, 25, 26, 36, 37, 46, 54, 62, 63, 78, 79, 93, 103, 116, 117, 137, 142, 157, 166, 184, 185, 216, 217, 233, 247, 266, 278, 308, 309, 330, 346, 374, 375, 416, 417, 443, 467, 492, 493, 533, 540, 575, 595, 625, 626, 671, 687, 723, 745
Offset: 0

Views

Author

Daniel Suteu, Nov 25 2018

Keywords

Comments

Partial sums of A069359.

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(i*pi(floor(n/i)), i=1..n), n=0..60); # Ridouane Oudra, Oct 16 2019
  • Mathematica
    a[n_] := Module[{s=0, p=2}, While[p<=n, s += (Floor[n/p] * Floor[1 + n/p]); p=NextPrime[p]]; s]/2; Array[a, 100, 0] (* Amiram Eldar, Nov 25 2018 *)
  • PARI
    a(n) = my(s=0); forprime(p=2, n, s+=(n\p)*(1+n\p)); s/2;
    
  • PARI
    a(n) = sum(k=1, sqrtint(n), k*(k+1) * (primepi(n\k) - primepi(n\(k+1))))/2 + sum(k=1, n\(sqrtint(n)+1), if(isprime(k), (n\k)*(1+n\k), 0))/2;

Formula

a(n) ~ A085548 * n*(n+1)/2.
a(n) = Sum_{p prime <= n} A000217(floor(n/p)).
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (pi(floor(n/k)) - pi(floor(n/(k+1)))) + Sum_{p prime <= floor(n/(1+floor(sqrt(n))))} floor(n/p)*floor(1+n/p))/2, where pi(x) is the prime-counting function (A000720).
a(n) = Sum_{i=1..n} i*pi(floor(n/i)), where pi(n) = A000720(n). - Ridouane Oudra, Oct 16 2019

A349337 Dirichlet inverse of A230593.

Original entry on oeis.org

1, -3, -4, 3, -6, 13, -8, -3, 4, 19, -12, -16, -14, 25, 25, 3, -18, -17, -20, -22, 33, 37, -24, 19, 6, 43, -4, -28, -30, -87, -32, -3, 49, 55, 49, 33, -38, 61, 57, 25, -42, -113, -44, -40, -29, 73, -48, -22, 8, -25, 73, -46, -54, 21, 73, 31, 81, 91, -60, 125, -62, 97, -37, 3, 85, -165, -68, -58, 97, -163, -72, -52
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Comments

Coincides with A347084 on all squarefree numbers (A005117), but also on n=81, where a(81) = A347084(81) = 4. Question: Are there any other such numbers?

Crossrefs

Programs

  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA230593(n) = sumdiv(n, d, ((1==d)||isprime(d))*(n/d));
    v349337 = DirInverseCorrect(vector(up_to,n,A230593(n)));
    A349337(n) = v349337[n];

Formula

For n > 1, a(n) = -Sum_{d|n, 1A230593(d) * A349337(n/d).

A386438 a(n) = sigma(n) + omega(n) - n * Sum_{p|n, p prime} 1 / p.

Original entry on oeis.org

1, 3, 4, 6, 6, 9, 8, 12, 11, 13, 12, 20, 14, 17, 18, 24, 18, 26, 20, 30, 24, 25, 24, 42, 27, 29, 32, 40, 30, 44, 32, 48, 36, 37, 38, 63, 38, 41, 42, 64, 42, 58, 44, 60, 56, 49, 48, 86, 51, 60, 54, 70, 54, 77, 58, 86, 60, 61, 60, 109, 62, 65, 76, 96, 68, 86, 68, 90, 72, 88, 72, 137, 74, 77, 86, 100, 80, 100, 80, 132, 95, 85, 84, 145, 88, 89, 90, 130, 90, 144
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 21 2025

Keywords

Comments

For each divisor d of n, add 1 if n/d is prime, else add d.

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A001221 (omega), A005171, A007503, A010051, A069359, A348219.

Programs

  • Mathematica
    Table[Sum[d^(1 - PrimePi[n/d] + PrimePi[n/d - 1]), {d, Divisors[n]}], {n, 100}]

Formula

a(n) = Sum_{d|n} d^c(n/d), where c = A005171.
a(n) = Sum_{d|n} (d + c(d) - phi(d)*omega(n/d)), where c = A010051.
a(n) = A000203(n) + A001221(n) - A069359(n).
a(n) = A007503(n) - A348219(n).

A304404 If n = Product (p_j^k_j) then a(n) = Product (n/p_j^k_j).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 900, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 1764, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 3600, 1, 62, 63, 1, 65, 4356, 1, 68, 69, 4900, 1, 72, 1, 74, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(60) = a(2^2*3*5) = (60/2^2) * (60/3) * (60/5) = 15 * 20 * 12 = 3600.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (n/#[[1]]^#[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 75}]
    Table[n^(PrimeNu[n] - 1), {n, 75}]
  • PARI
    A304404(n) = (n^(omega(n)-1)); \\ Antti Karttunen, Aug 06 2018
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A304404(n): return int(n**(primenu(n)-1)) # Chai Wah Wu, Jul 12 2023

Formula

a(n) = n^(omega(n)-1), where omega() = A001221.
a(n) = A062509(n)/n.

A348203 a(n) = n - omega(n) + n * Sum_{p|n} 1/p.

Original entry on oeis.org

1, 2, 3, 5, 5, 9, 7, 11, 11, 15, 11, 20, 13, 21, 21, 23, 17, 31, 19, 32, 29, 33, 23, 42, 29, 39, 35, 44, 29, 58, 31, 47, 45, 51, 45, 64, 37, 57, 53, 66, 41, 80, 43, 68, 67, 69, 47, 86, 55, 83, 69, 80, 53, 97, 69, 90, 77, 87, 59, 119, 61, 93, 91, 95, 81, 124, 67, 104, 93, 126
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 06 2021

Keywords

Comments

For 1 <= k <= n, if k is a prime divisor of n then add n/k, otherwise add 1. For example, a(6) = 9 since the values of k from 1 to 6 would be: 1 + 6/2 + 6/3 + 1 + 1 + 1 = 9.
If p is prime, then a(p) = p since we have a(p) = p - omega(p) + phi(1)*omega(p/1) + phi(p)*omega(p/p) = p - 1 + 1*1 + (p-1)*0 = p.

Crossrefs

Cf. A000010 (phi), A001221 (omega), A010051, A069359.

Programs

  • Mathematica
    Table[n - PrimeNu[n] + Sum[EulerPhi[k]*PrimeNu[n/k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]

Formula

a(n) = Sum_{k=1..n} (n/k)^(c(k) * (1 - ceiling(n/k) + floor(n/k))), where c is the prime characteristic (A010051).
a(n) = n - A001221(n) + A069359(n).
a(prime(n)) = prime(n).

A370513 Complement of A323599.

Original entry on oeis.org

2, 5, 29, 39, 53, 59, 73, 95, 119, 123, 125, 129, 137, 145, 147, 149, 157, 159, 163, 173, 179, 191, 199, 207, 209, 213, 219, 221, 235, 251, 257, 263, 265, 269, 271, 279, 291, 293, 299, 303, 305, 325, 327, 329, 343, 345, 347, 359, 365, 367, 369, 375, 385, 395, 397
Offset: 1

Views

Author

Torlach Rush, Feb 20 2024

Keywords

Comments

Terms of this sequence are not solutions of Sum_{d|k} A069359(d), k >= 1.
Proof that 2 is not a solution of Sum_{d|k} A069359(d), k >= 1: (Start)
If 2 is a solution then the only summands of the above are either (0,2) or (0,1,1).
(0,2) cannot be the only summands. If 2 is a summand then it is also a divisor of a(n) and A069359(2) = 1. If 2 is a summand then so must 1 be a summand.
(0,1,1) cannot be the only summands. There must exist an additional summand A069359(p_1*p_2) where p_1 and p_2 (primes) contribute to each 1 in (0,1,1).
(End)
To prove that 5 is not a solution of Sum_{d|k} A069359(d), k >= 1 we need to show that each of the following summands cannot exist: (0,5), (0,1,4), (0,1,2,2), (0,1,1,3), (0,1,1,1,2). (0,1,1,1,1,1). Following from the above proof this is elementary.

Examples

			2 is a term because it is not a solution of Sum_{d|k} A069359(d), k >= 1. See proof in Comments.
		

Crossrefs

Previous Showing 51-60 of 63 results. Next