cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 73 results. Next

A070136 Numbers m such that [A070080(m), A070081(m), A070082(m)] is a right integer triangle.

Original entry on oeis.org

17, 116, 212, 370, 493, 850, 1297, 1599, 1629, 2574, 2778, 3751, 4298, 4370, 5251, 5286, 6476, 9169, 10066, 12398, 12441, 12520, 14414, 16365, 16602, 19831, 21231, 21486, 24060, 26125, 27245, 29230, 33625, 33658
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Right integer triangles have integer areas: see A070142.

Examples

			116 is a term: [A070080(116), A070081(116), A070082(116)]=[6,8,10], A070085(116)=6^2+8^2-10^2=36+64-100=0.
212 is a term: [A070080(212), A070081(212), A070082(212)]=[5,12,13], A070085(212)=5^2+12^2-13^2=25+144-169=0.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a^2 + b^2 == c^2] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A070137 Numbers k such that [A070080(k), A070081(k), A070082(k)] is a right integer triangle with relatively prime side lengths.

Original entry on oeis.org

17, 212, 493, 1297, 2574, 4298, 5251, 14414, 16365, 21231, 26125, 39056, 42597, 55042, 63770, 75052, 91121, 97256, 124355, 164640, 200999, 213083, 253721, 275999, 367997, 384154, 415778, 478343, 511633, 518370, 606417, 665040, 689356, 755435, 846571
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Right integer triangles have integer areas: see A070143.

Examples

			493 is a term: [A070080(493), A070081(493), A070082(493)]=[8,15,17], A070084(493)=gcd(8,15,17)=1, A070085(493)=8^2+15^2-17^2=64+225-289=0.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; GCD[a, b, c] == 1 && a^2 + b^2 - c^2 == 0] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

Extensions

More terms from Jean-François Alcover, Oct 04 2021

A070209 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer inradius.

Original entry on oeis.org

17, 116, 212, 269, 368, 370, 493, 561, 587, 659, 850, 1204, 1297, 1582, 1599, 1629, 1920, 1988, 2115, 2352, 2555, 2574, 2774, 2778, 3251, 3473, 3746, 3751, 4286, 4298, 4307, 4313, 4319, 4330, 4370, 4406, 5008, 5251
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(3)=212: [A070080(212), A070081(212), A070082(212)] = [5,12,13], for s = A070083(212)/2 = (5+12+13)/2 = 15: inradius = sqrt((s-5)*(s-12)*(s-13)/s) = sqrt(10*3*2/15) = sqrt(4) = 2; therefore A070200(212)=2. [Corrected by _Rick L. Shepherd_, May 15 2008]
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

A070113 Numbers k such that [A070080(k), A070081(k), A070082(k)] is a scalene integer triangle with relatively prime side lengths.

Original entry on oeis.org

8, 13, 17, 20, 21, 25, 29, 30, 33, 36, 37, 41, 42, 44, 45, 49, 53, 56, 57, 59, 60, 62, 66, 67, 69, 70, 74, 75, 77, 78, 79, 80, 83, 86, 89, 90, 92, 96, 97, 99, 100, 101, 102, 105, 106, 110, 111, 113, 114, 115, 119, 122, 123, 125, 126
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			36 is a term [A070080(36), A070081(36), A070082(36)]=[3<6<7], A070084(36)=gcd(3,6,7)=1.
		

Crossrefs

Programs

  • Mathematica
    m = 50 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a < b < c && GCD[a, b, c] == 1] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

A070116 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an isosceles integer triangle with relatively prime side lengths.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 19, 22, 23, 27, 28, 32, 35, 39, 40, 43, 46, 47, 51, 52, 55, 58, 61, 63, 64, 65, 72, 73, 81, 88, 94, 95, 98, 103, 104, 107, 108, 109, 118, 121, 124, 133, 135, 136, 140, 146, 150, 151, 159, 163, 166
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(10)=15: [A070080(15), A070081(15), A070082(15)]=[3<4=4], A070084(15)=gcd(3,4,4)=1.
		

Crossrefs

A070119 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an acute integer triangle with relatively prime side lengths.

Original entry on oeis.org

1, 2, 4, 6, 7, 11, 12, 15, 16, 19, 22, 23, 27, 28, 33, 35, 39, 40, 43, 45, 46, 47, 51, 53, 55, 58, 60, 63, 64, 65, 70, 72, 73, 81, 83, 88, 90, 92, 94, 95, 98, 103, 106, 107, 108, 109, 114, 119, 121, 124, 132, 134, 135, 136, 140, 142, 148
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(15)=33: [A070080(33), A070081(33), A070082(33)]=[4,5,6], A070084(33)=gcd(4,5,6)=1, A070085(33)=4^2+5^2-6^2=16+25-36=5>0.
		

Crossrefs

A070128 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse integer triangle with relatively prime side lengths.

Original entry on oeis.org

5, 8, 13, 14, 20, 21, 25, 29, 30, 32, 36, 37, 41, 42, 44, 49, 52, 56, 57, 59, 61, 62, 66, 67, 69, 74, 75, 77, 78, 79, 80, 86, 89, 96, 97, 99, 100, 101, 102, 104, 105, 110, 111, 113, 115, 118, 122, 123, 125, 126, 127, 128, 130, 131, 133
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(9)=30: [A070080(30), A070081(30), A070082(30)]=[3,5,7], A070084(30)=gcd(3,5,7)=1, A070085(30)=3^2+5^2-7^2=9+25-49=-15>0.
		

Crossrefs

A070149 Areas of integer Heronian triangles [A070080(A070142(n)), A070081(A070142(n)), A070082(A070142(n))].

Original entry on oeis.org

6, 12, 12, 24, 30, 24, 48, 36, 54, 48, 60, 60, 42, 84, 66, 84, 96, 108, 60, 120, 36, 90, 126, 108, 84, 60, 120, 150, 72, 96, 168, 120, 192, 132, 204, 210, 210, 84, 144, 216, 192, 240, 114, 156, 180, 120, 240, 300, 168, 210, 168
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			A070142(2)=39: [A070080(39), A070081(39), A070082(39)] = [5,5,6], area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore a(2)=A070086(39)=area=4*3=12.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)]];
    Select[area /@ triangles, IntegerQ] (* Jean-François Alcover, Oct 12 2021 *)

Formula

a(n) = A070086(A070142(n)).

A070200 Inradii of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Triangles [A070080(A070209(n)), A070081(A070209(n)), A070082(A070209(n))] have integer inradii = a(A070209(k))= A070210(k).

Examples

			[A070080(25), A070081(25), A070082(25)] = [3,5,6] and s = A070083(25)/2 = (3+5+6)/2 = 7: a(25) = sqrt((s-3)*(s-5)*(s-6)/7) = sqrt((7-3)*(7-5)*(7-6)/7) = sqrt(4*2*1/7) = sqrt(8/7) = 1.069, rounded = 1.
		

Crossrefs

Cf. A070086.

Formula

a(n) = sqrt((s-u)*(s-v)*(s-w)/s), where u=A070080(n), v=A070081(n), w=A070082(n) and s=A070083(n)/2=(u+v+w)/2.

A135622 16*Area^2 of integer triangles [A070080(n),A070081(n),A070082(n)].

Original entry on oeis.org

3, 15, 48, 35, 63, 128, 63, 135, 243, 240, 320, 99, 231, 275, 495, 384, 576, 768, 143, 351, 455, 819, 975, 560, 896, 1008, 1344, 195, 495, 675, 1215, 735, 1575, 1875, 768, 1280, 1536, 2048, 2304, 255, 663, 935, 1683, 1071, 2295, 2499, 2975, 1008, 1728
Offset: 1

Views

Author

Franz Vrabec, Feb 29 2008

Keywords

Examples

			A070080(4)=1, A070081(4)=3, A070082(4)=3, so a(4)=(1+3+3)*(-1+3+3)*(1-3+3)*(1+3-3)=35.
		

Crossrefs

See the formula section for the relationships with A070080, A070081, A070082, A070086.
Cf. A317182 (range of values), A331011 (nonunique values), A331250 (counts triangles by area).
Cf. A316853 (with terms ordered as for A316841), and using this order for other sets of triangles: A046131, A055595, A070786.

Formula

a(n)=(u+v+w)*(-u+v+w)*(u-v+w)*(u+v-w), where u=A070080(n), v=A070081(n), w=A070082(n).
A070086(n) = round(sqrt(a(n))/4).
Previous Showing 21-30 of 73 results. Next