cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A070200 Inradii of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Triangles [A070080(A070209(n)), A070081(A070209(n)), A070082(A070209(n))] have integer inradii = a(A070209(k))= A070210(k).

Examples

			[A070080(25), A070081(25), A070082(25)] = [3,5,6] and s = A070083(25)/2 = (3+5+6)/2 = 7: a(25) = sqrt((s-3)*(s-5)*(s-6)/7) = sqrt((7-3)*(7-5)*(7-6)/7) = sqrt(4*2*1/7) = sqrt(8/7) = 1.069, rounded = 1.
		

Crossrefs

Cf. A070086.

Formula

a(n) = sqrt((s-u)*(s-v)*(s-w)/s), where u=A070080(n), v=A070081(n), w=A070082(n) and s=A070083(n)/2=(u+v+w)/2.

A070145 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an isosceles integer triangle with integer area.

Original entry on oeis.org

39, 52, 269, 372, 375, 862, 957, 972, 1204, 1955, 1971, 1988, 2790, 2796, 3818, 5374, 6522, 6880, 6881, 6921, 7234, 7310, 7341, 7360, 9198, 9207, 10272, 14506, 15101, 15177, 15237, 21289, 21493, 21540, 21552, 21589
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=39: [A070080(39), A070081(39), A070082(39)] = [5=5<6], area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore A070086(39)=area=4*3=12.
		

Crossrefs

A371973 a(n) is the number of distinct areas > 0 of triangles with integer sides and perimeter n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 13, 19, 14, 21, 19, 23, 20, 27, 23, 30, 27, 32, 29, 35, 32, 39, 34, 44, 39, 48, 43, 52, 47, 55, 51, 60, 53, 63, 59, 69, 58, 74, 67, 78, 73, 84, 75, 90, 81, 92, 88, 101, 91, 108, 93, 112, 106
Offset: 3

Views

Author

Hugo Pfoertner, Apr 16 2024

Keywords

Crossrefs

See the formula section for the relationships with A026810, A070083, A135622 (which has many crossrefs related to areas of triangles).

Programs

  • PARI
    A2(a,b,c) = {my (s=(a+b+c)/2); s*(s-a)*(s-b)*(s-c)};
    a371973(n) = {my (A=List()); forpart (v=n, listput(A, A2(v[1],v[2],v[3])), [1,(n-1)\2], [3,3]); #Set(A)};
    
  • Python
    def A371973(n): return len(set((2*(b+c)-n)*(n-2*b)*(n-2*c) for c in range((n+2)//3, (n+1)//2) for b in range((n-c+1)//2, c+1))) # David Radcliffe, Aug 01 2025

Formula

a(n) = |{A135622(k) : A070083(k) = n}| = |{A135622(k) : A026810(n) < k <= A026810(n+1)}|. - Peter Munn, Jul 29 2025

Extensions

b-file corrected by David Radcliffe, Aug 01 2025

A385737 Perimeters of nondegenerate triangles with integer areas, whose side lengths are triangular numbers.

Original entry on oeis.org

176, 224, 264, 336, 504, 644, 756, 950, 1196, 1232, 1280, 1500, 1566, 1650, 1700, 2100, 2112, 2250, 2366, 2754, 3036, 3306, 5676, 5796, 7296, 8064, 8316, 8526, 9576, 10206, 10260, 12474, 13200, 15872, 16236, 16896, 17094, 17150, 20172, 21714, 21726, 22382, 22644
Offset: 1

Views

Author

Felix Huber, Jul 16 2025

Keywords

Comments

224 and 1280 are the only perimeters <= 10^6 of nondegenerate triangles whose side lengths (28, 91, 105 or 325, 325, 630, respectively) and areas (1176 or 25200, respectively) are triangular numbers.

Examples

			176 is a term because it is the perimeter of the triangle [55, 55, 66], where 55 and 66 are triangular numbers, which has an integer area of sqrt(88*(88 - 55)*(88 - 55)*(88 - 66)) = 1452.
224 is a term because it is the perimeter of the triangle [28, 91, 105], where 28, 91 and 105 are triangular numbers, which has an integer area of sqrt(112*(112 - 28)*(112 - 91)*(112 - 105)) = 1176 (which is also a triangular number).
		

Crossrefs

Subsequence of A380875.

Programs

  • Maple
    A385737:=proc(P) # To get all perimeters <= P.
        local p,x,y,z,u,v,w,s;
        p:=[];
        for z to floor((sqrt(24*P+9)-3)/6) do
            for x from z to floor((sqrt(4*P-3)-1)/2) do
                for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*P-x^2-x-z^2-z))-1)/2)) do
                	u:=z*(z+1)/2;
                	v:=y*(y+1)/2;
                	w:=x*(x+1)/2;
                	s:=(u+v+w)/2;
                	if issqr(s*(s-u)*(s-v)*(s-w)) then
                   	    p:=[op(p),u+v+w]
                   	fi
                od
            od
        od;
        return op(sort(p))
    end proc;
    A385737(22644);

A070144 Numbers n such that [A070080(n), A070081(n), A070082(n)] is a scalene integer triangle with integer area.

Original entry on oeis.org

17, 116, 212, 252, 368, 370, 493, 561, 587, 659, 839, 850, 1156, 1186, 1196, 1297, 1582, 1599, 1629, 1912, 1920, 2115, 2352, 2555, 2574, 2713, 2774, 2778, 3251, 3473, 3728, 3746, 3751, 4286, 4298, 4307, 4313, 4319
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(2)=116: [A070080(116), A070081(116), A070082(116)] = [6<8<10], area^2 = s*(s-6)*(s-8)*(s-10) with s=A070083(116)/2=(6+8+10)/2=12, area^2=12*6*4*2=64*9 is an integer square, therefore A070086(116)=area=8*3=24.
		

Crossrefs

A070146 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an acute integer triangle with integer area.

Original entry on oeis.org

39, 269, 375, 587, 862, 972, 1196, 1955, 1988, 2352, 2555, 2796, 3818, 4319, 4406, 5378, 6522, 6808, 6880, 6890, 6921, 7234, 7360, 8193, 9159, 9207, 10272, 14545, 15004, 15061, 15101, 15216, 15237, 15943, 16502
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=39: [A070080(39), A070081(39), A070082(39)] = [5,5,6]: A070085(39)=5^2+5^2-6^2=14>0 and area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore A070086(39)=area=4*3=12.
		

Crossrefs

A070147 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an obtuse integer triangle with integer area.

Original entry on oeis.org

52, 252, 368, 372, 561, 659, 839, 957, 1156, 1186, 1204, 1582, 1912, 1920, 1971, 2115, 2713, 2774, 2790, 3251, 3473, 3728, 3746, 4286, 4307, 4313, 4330, 5008, 5272, 5374, 6369, 6389, 6432, 6776, 6881, 7223, 7310, 7341
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=52: [A070080(52), A070081(52), A070082(52)] = [5,5,8]: A070085(52)=5^2+5^2-8^2=-14<0 and area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(52)/2=(5+5+8)/2=9, area^2=9*4*4*1=16*9 is an integer square, therefore A070086(52)=area=4*3=12.
		

Crossrefs

A070210 Inradii of integer triangles [A070080(A070209(n)), A070081(A070209(n)), A070082(A070209(n))].

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 2, 4, 3, 4, 4, 3, 2, 4, 5, 3, 6, 4, 6, 6, 6, 4, 6, 3, 4, 3, 6, 4, 5, 4, 3, 6, 5, 7, 8, 6, 4, 6, 8, 7, 8, 9, 3, 9, 5, 6, 9, 8, 10, 6, 6, 6, 9, 8, 4, 8, 9, 7, 10, 6, 10, 12, 6, 12, 12, 5, 3, 7, 8, 10, 4, 9, 10, 11, 6, 12, 3, 6, 9, 12, 12, 7, 8
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070200(A070209(n)).

Examples

			A070209(3)=212: [A070080(212), A070081(212), A070082(212)] = [5,12,13], let s = A070083(212)/2 = (5+12+13)/2 = 15 then inradius = sqrt((s-5)*(s-5)*(s-6)/s) = sqrt(10*3*2/15) = sqrt(4) = 2; a(3) = A070200(212) = 2.
		

Crossrefs

A371969 Perimeters of triangles with integer sides, which can be decomposed into 3 triangles that have a common vertex strictly inside the surrounding triangle and also integer sides.

Original entry on oeis.org

49, 50, 54, 64, 75, 78, 80, 88, 90, 91, 98, 100, 104, 108, 112, 117, 120, 121, 125, 126, 128, 133, 136, 140, 144, 147, 150, 156, 160, 162, 165, 168, 169, 170, 175, 176, 180, 182, 184, 188, 192, 195, 196, 198, 200, 203, 208, 210, 216, 220, 224, 225, 231, 234, 238, 240
Offset: 1

Views

Author

Klaus Nagel and Hugo Pfoertner, Apr 14 2024

Keywords

Examples

			a(1) = 49 is the perimeter of the first decomposable triangle with sides of the outer triangle [8, 19, 22], and sides meeting at the 4th "inner" vertex: 17, 6, 4. The 3 inner triangles have sides [8, 4, 6], [19, 17, 4], and [22, 6, 17].
		

References

  • These triangles can be viewed as degenerate tetrahedrons, in which all triangular inequalities for the faces are satisfied, and the Cayley-Menger determinant, which determines whether the 4th vertex yields a valid tetrahedron, takes the value 0.

Crossrefs

Programs

  • PARI
    H(a,b,c) = {my (s=(a+b+c)/2); s*(s-a)*(s-b)*(s-c)};
    CM(w1,w2,w3,v1,v2,v3) = matdet([0,1,1,1,1; 1,0,w3^2,w2^2,v1^2; 1,w3^2,0,w1^2,v2^2; 1,w2^2,w1^2,0,v3^2; 1,v1^2,v2^2,v3^2,0]);
    is_a371969(peri) = {forpart (w=peri, my (A=H(w[1],w[2],w[3]), epsA=1e-12); for (v1=1, w[3]-2, for (v2=w[3]-v1+1, w[3]-2, my (A3=H(w[3],v2,v1)); if (A3>=A, next); for (v3=1, w[3]-2, if (v3+v2<=w[1] || v3+v1<=w[2], next); my (A1=H(w[1],v2,v3)); if (A1>=A, next); my (A2=H(w[2],v1,v3)); if (A2>=A, next); my (C=CM(w[1],w[2],w[3],v1,v2,v3)); if (C==0 && abs(sqrt(A)-sqrt(A1)-sqrt(A2)-sqrt(A3)) < epsA,
    \\ print (peri," ",Vec(w)," ",[v1,v2,v3]);
    return(1))))), [1,(peri-1)\2], [3,3]); 0};
    for (n=3, 100, if (is_a371969(n), print1(n,", ")))

A070150 Triangular areas of integer Heronian triangles.

Original entry on oeis.org

6, 36, 66, 120, 36, 120, 120, 210, 210, 120, 300, 210, 210, 300, 378, 630, 528, 780, 528, 210, 630, 630, 300, 1176, 780, 2016, 990, 1176, 2016, 2016, 1596, 780, 1770, 528, 300, 2850, 630, 2016, 780, 990, 3240, 2016, 630
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070086(A070148(n)).

Examples

			A070148(2)=368: [A070080(368), A070081(368), A070082(368)] = [9,10,17], area^2 = s*(s-9)*(s-10)*(s-17) with s=A070083(368)/2=(9+10+17)/2=18, area^2=18*9*8*1=16*81 is an integer square, therefore area=4*9=36=A000217(8).
		

Programs

  • Mathematica
    maxPerim = 300; maxSide = Floor[(maxPerim - 1)/2]; order[{a_, b_, c_}] := (a + b + c)*maxPerim^3 + a*maxPerim^2 + b*maxPerim + c; triangles = Reap[ Do[ If[ a + b + c <= maxPerim && c - b < a < c + b && b - a < c < b + a && c - a < b < c + a, Sow[{a, b, c}]], {a, 1, maxSide}, {b, a, maxSide}, {c, b, maxSide}]][[2, 1]]; stri = Sort[ triangles, order[#1] < order[#2] &]; area[{a_, b_, c_}] := With[{p = (a + b + c)/2}, Sqrt[p*(p - a)*(p - b)*(p - c)]]; triangularQ[n_] := IntegerQ[Sqrt[8*n + 1]]; area /@ Select[stri, IntegerQ[area[#]] && triangularQ[area[#]] &] (* Jean-François Alcover, Feb 22 2013 *)
Previous Showing 11-20 of 20 results.