cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A361262 Numbers k such that k+i^2, i=0..6 are all semiprimes.

Original entry on oeis.org

3238, 4162, 4537, 13918, 16837, 17857, 18673, 24553, 55477, 62353, 78457, 84358, 92878, 102838, 106813, 129838, 135853, 140002, 142822, 146722, 148318, 151957, 166177, 180013, 184213, 187933, 194338, 210637, 214393, 231757, 242698, 271198, 274393, 305677
Offset: 1

Views

Author

Alexandru Petrescu, Mar 06 2023

Keywords

Examples

			3238 is a term because 3238=2*1619; 3239=41*79; 3242=2*1621; 3247=17*191; 3254=2*1627; 3263=13*251; 3274=2*1637.
		

Crossrefs

Subsequence of A070552.
Cf. A001358 (semiprimes).

Programs

  • Maple
    q:= n-> andmap(x-> numtheory[bigomega](x)=2, [n+i^2$i=0..6]):
    select(q, [$1..400000])[];  # Alois P. Heinz, Mar 06 2023
  • Mathematica
    okQ[k_] := AllTrue[Table[k+i^2, {i, 0, 6}], PrimeOmega[#] == 2&];
    Select[Range[400000], okQ] (* Jean-François Alcover, Feb 02 2025 *)
  • PARI
    isok(k) = sum(i=0, 6, bigomega(k+i^2)==2) == 7;

A367075 a(n) is the least semiprime that is the first of n consecutive semiprimes s(1) ... s(n) such that s(i) - prime(i) are all equal.

Original entry on oeis.org

4, 9, 118, 514, 1202, 9662, 46418, 198878, 273386, 717818, 717818, 270893786, 1009201118, 1009201118, 68668578806, 421210555538, 421210555538, 81550619289662, 645040014922382, 645040014922382, 645040014922382
Offset: 1

Views

Author

Robert Israel, Nov 05 2023

Keywords

Examples

			a(3) = 118 because 118, 119, 121 are consecutive semiprimes with 118 - 2 = 119 - 3 = 121 - 5 = 116, and this is the first semiprime that works.
		

Crossrefs

All terms are in A001358 and (except for the initial term 4) A070552.

Programs

  • Maple
    P:= select(isprime, [2,seq(i,i=3..10^6,2)]):
    SP:= select(t -> numtheory:-bigomega(t)=2, [$4..10^7]):
    nSP:= nops(SP);
    t:= 1: k0:= 1: R:= 4: tmax:= 1: d:= 2:
    for k from 2 to nSP do
      if SP[k]-P[k-k0+1] = d then
        t:= t+1;
        if t > tmax then R:= R, SP[k0]; tmax:= t; fi;
      else
        t:= 1; k0:= k; d:= SP[k] - 2;
      fi
    od:
    R;

Extensions

a(12) from David A. Corneth, Nov 05 2023
a(13)-a(15) from Daniel Suteu, Nov 18 2023
a(16)-a(18) from Martin Ehrenstein, Dec 01 2023
a(19)-a(21) from Martin Ehrenstein, Dec 03 2023
Previous Showing 31-32 of 32 results.