A294642
a(n) = n! * [x^n] exp(n*x)*BesselI(1,2*sqrt(2)*x)/(sqrt(2)*x).
Original entry on oeis.org
1, 1, 6, 45, 456, 5825, 89896, 1627437, 33822944, 793783233, 20765009344, 599157626925, 18904594000128, 647524807918209, 23929038677825152, 948995910652193325, 40203601321988822528, 1812025020244371552897, 86577002960871477916672, 4371100278517527047687213
Offset: 0
-
Simplify[Table[n! SeriesCoefficient[Exp[n x] BesselI[1, 2 Sqrt[2] x]/(Sqrt[2] x), {x, 0, n}], {n, 0, 19}]]
Table[SeriesCoefficient[(1 - n x - Sqrt[1 - 2 n x + (n^2 - 8) x^2])/(4 x^2), {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-2 x^2, 1 - n x, {i, 1, n}]), {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[Sum[2^k n^(n - 2 k) Binomial[n, 2 k] CatalanNumber[k], {k, 0, Floor[n/2]}], {n, 1, 19}]]
Join[{1}, Table[n^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {2}, 8/n^2], {n, 1, 19}]]
A369213
Expansion of (1/x) * Series_Reversion( x / ((1+x)^4+x^2) ).
Original entry on oeis.org
1, 4, 23, 152, 1091, 8264, 65021, 526236, 4352942, 36637576, 312763225, 2701521420, 23567184019, 207343098824, 1837623853627, 16391011930424, 147029997389386, 1325506554640872, 12003342144724338, 109136630802023808, 995907341988015935
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4+x^2))/x)
-
a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(4*n-4*k+4, n-2*k))/(n+1);
A108073
Triangle in A071943 with rows reversed.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 9, 7, 3, 1, 31, 24, 12, 4, 1, 113, 89, 46, 18, 5, 1, 431, 342, 183, 76, 25, 6, 1, 1697, 1355, 741, 323, 115, 33, 7, 1, 6847, 5492, 3054, 1376, 520, 164, 42, 8, 1, 28161, 22669, 12768, 5900, 2326, 786, 224, 52, 9, 1, 117631, 94962, 54033, 25464
Offset: 0
1; 1,1; 3,2,1; 9,7,3,1; 31,24,12,4,1; ...
-
q:=sqrt(1-4*z-4*z^2): G:=(1-q)/z/(2-t+2*z+t*q): Gserz:=simplify(series(G,z=0,14)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gserz,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form # Emeric Deutsch, Jun 06 2005
-
T[n_, n_] = 1; T[n_, k_] := (k+1)*Sum[Binomial[i, n-k-i] * Binomial[k+2*i, i] / (k+i+1), {i, 1, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Vladimir Kruchinin *)
-
T(n,k):=if n=k then 1 else k*sum((binomial(i,n-k-i)*binomial(k+2*i-1,i))/(k+i),i,1,n-k); /* Vladimir Kruchinin, Apr 27 2015 */
A177896
A binomial conjugate of the Narayana numbers.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 4, 9, 6, 1, 9, 26, 26, 10, 1, 21, 75, 100, 60, 15, 1, 51, 216, 360, 295, 120, 21, 1, 127, 623, 1246, 1295, 735, 217, 28, 1, 323, 1800, 4200, 5292, 3864, 1624, 364, 36, 1, 835, 5211, 13896, 20580, 18396, 10080, 3276, 576, 45, 1, 2188, 15115, 45345, 77190, 81690, 55314, 23730, 6150, 870, 55, 1
Offset: 0
Triangle begins
1,
1, 1,
2, 3, 1,
4, 9, 6, 1,
9, 26, 26, 10, 1,
21, 75, 100, 60, 15, 1,
51, 216, 360, 295, 120, 21, 1,
127, 623, 1246, 1295, 735, 217, 28, 1,
323, 1800, 4200, 5292, 3864, 1624, 364, 36, 1
Comments