cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 72 results. Next

A071561 Numbers with no middle divisors (cf. A071090).

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 27, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 111, 113, 114
Offset: 1

Views

Author

Robert G. Wilson v, May 30 2002

Keywords

Comments

Numbers k such that A071090(k) is 0.
Conjecture: lim_{n->oo} a(n)/n = 4/3.
Regarding the above conjecture, numerical calculations suggest that this limit is smaller than 4/3. See A071540. - Amiram Eldar, Jul 27 2024
Also numbers n with the property that the number of parts in the symmetric representation of sigma(n) is even. - Michel Marcus and Omar E. Pol, Apr 25 2014 [For a proof see the link. - Hartmut F. W. Hoft, Sep 09 2015]
Middle divisors are divisors d with sqrt(k/2) <= d < sqrt(2k). - Michael B. Porter, Oct 19 2018

Examples

			From _Michael B. Porter_, Oct 19 2018: (Start)
The divisors of 21 are 1, 3, 7, and 21.  Since none of these are between sqrt(21/2) = 3.24... and sqrt(2*21) = 6.48..., 21 is in the sequence.
The divisors of 20 are 1, 2, 4, 5, 10, and 20.  Since 4 and 5 are both between sqrt(20/2) = 3.16... and sqrt(2*20) = 6.32..., 20 is not in the sequence. (End)
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Select[ Divisors[n], Sqrt[n/2] <= # < Sqrt[n*2] &]; Select[ Range[125], f[ # ] == 0 &]
    (* Related to the symmetric representation of sigma *)
    (* subsequence of even parts of number k for m <= k <= n *)
    (* Function a237270[] is defined in A237270 *)
    (* Using Wilson's Mathematica program (see above) I verified the equality of both for numbers k <= 10000 *)
    a071561[m_, n_]:=Select[Range[m, n], EvenQ[Length[a237270[#]]]&]
    a071561[1, 114] (* data *)
    (* Hartmut F. W. Hoft, Jul 07 2014 *)
    Select[Range@ 120, Function[n, Select[Divisors@ n, Sqrt[n/2] <= # < Sqrt[2 n] &] == {}]] (* Michael De Vlieger, Jan 03 2017 *)
  • PARI
    is(n) = fordiv(n, d, if(sqrt(n/2) <= d && d < sqrt(2*n), return(0))); 1 \\ Iain Fox, Dec 19 2017
    
  • PARI
    is(n,f=factor(n))=my(t=(n+1)\2); fordiv(f,d, if(d^2>=t, return(d^2>2*n))); 0 \\ Charles R Greathouse IV, Jan 22 2018
    
  • PARI
    list(lim)=my(v=List(),t); forfactored(n=3,lim\1, t=(n[1]+1)\2; fordiv(n[2],d, if(d^2>=t, if(d^2>2*n[1], listput(v,n[1])); break))); Vec(v) \\ Charles R Greathouse IV, Jan 22 2018

A071090 Sum of middle divisors of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 5, 0, 2, 3, 0, 0, 7, 0, 0, 8, 4, 0, 3, 0, 9, 0, 0, 0, 10, 5, 0, 0, 11, 0, 11, 0, 4, 0, 0, 12, 6, 0, 0, 0, 13, 0, 13, 0, 0, 14, 0, 0, 14, 7, 5, 0, 0, 0, 15, 0, 15, 0, 0, 0, 16, 0, 0, 16, 8, 0, 17, 0, 0, 0, 17, 0, 23, 0, 0, 0, 0, 18, 0, 0, 18, 9, 0, 0, 19, 0, 0, 0, 19, 0, 19, 20, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2002

Keywords

Comments

Divisors are in the half-open interval [sqrt(n/2), sqrt(n*2)).
Row sums of A299761. - Omar E. Pol, Jun 11 2022

Crossrefs

Programs

  • Maple
    A071090 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if d^2 >= n/2 and d^2 < n*2 then
                a := a+d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Jun 18 2015
  • Mathematica
    Table[Plus @@ Select[ Divisors[n], Sqrt[n/2] <= # < Sqrt[n*2] &], {n, 1, 95}]
  • PARI
    a(n)=sumdiv(n,d, if(d^2>=n/2 && d^2<2*n, d, 0)) \\ Charles R Greathouse IV, Aug 01 2016

Formula

a(n) = A000203(n) - A302433(n). - Omar E. Pol, Jun 11 2022

A299761 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which row n lists the middle divisors of n, or 0 if there are no middle divisors of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 2, 3, 0, 2, 3, 0, 0, 3, 4, 0, 0, 3, 5, 4, 0, 3, 0, 4, 5, 0, 0, 0, 4, 6, 5, 0, 0, 4, 7, 0, 5, 6, 0, 4, 0, 0, 5, 7, 6, 0, 0, 0, 5, 8, 0, 6, 7, 0, 0, 5, 9, 0, 0, 6, 8, 7, 5, 0, 0, 0, 6, 9, 0, 7, 8, 0, 0, 0, 6, 10, 0, 0, 7, 9, 8, 0, 6, 11, 0, 0, 0, 7, 10, 0, 6, 8, 9, 0, 0, 0, 0, 7, 11, 0, 0, 8, 10
Offset: 1

Views

Author

Omar E. Pol, Jun 08 2018

Keywords

Comments

The middle divisors of n are the divisors in the half-open interval [sqrt(n/2), sqrt(n*2)).

Examples

			Triangle begins (rows 1..16):
1;
1;
0;
2;
0;
2, 3;
0;
2;
3;
0;
0;
3, 4;
0;
0;
3, 5;
4;
...
For n = 6 the middle divisors of 6 are 2 and 3, so row 6 is [2, 3].
For n = 7 there are no middle divisors of 7, so row 7 is [0].
For n = 8 the middle divisor of 8 is 2, so row 8 is [2].
For n = 72 the middle divisors of 72 are 6, 8 and 9, so row 72 is [6, 8, 9].
		

Crossrefs

Row sums give A071090.
The number of nonzero terms in row n is A067742(n).
Nonzero terms give A303297.
Indices of the rows where there are zeros give A071561.
Indices of the rows where there are nonzero terms give A071562.

Programs

  • Mathematica
    Table[Select[Divisors@ n, Sqrt[n/2] <= # < Sqrt[2 n] &] /. {} -> {0}, {n, 80}] // Flatten (* Michael De Vlieger, Jun 14 2018 *)
  • PARI
    row(n) = my(v=select(x->((x >= sqrt(n/2)) && (x < sqrt(n*2))), divisors(n))); if (#v, v, [0]); \\ Michel Marcus, Aug 04 2022

A240062 Square array read by antidiagonals in which T(n,k) is the n-th number j with the property that the symmetric representation of sigma(j) has k parts, with j >= 1, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 7, 15, 21, 8, 10, 25, 27, 63, 12, 11, 35, 33, 81, 147, 16, 13, 45, 39, 99, 171, 357, 18, 14, 49, 51, 117, 189, 399, 903, 20, 17, 50, 55, 153, 207, 441, 987, 2499, 24, 19, 70, 57, 165, 243, 483, 1029, 2709, 6069, 28, 22, 77, 65, 195, 261, 513, 1113
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2014

Keywords

Comments

This is a permutation of the positive integers.
All odd primes are in column 2 (together with some even composite numbers) because the symmetric representation of sigma(prime(i)) is [m, m], where m = (1 + prime(i))/2, for i >= 2.
The union of all odd-indexed columns gives A071562, the positive integers that have middle divisors. The union of all even-indexed columns gives A071561, the positive integers without middle divisors. - Omar E. Pol, Oct 01 2018
Each column in the table of A357581 is a subsequence of the respective column in the table of this sequence; however, the first row in the table of A357581 is not a subsequence of the first row in the table of this sequence. - Hartmut F. W. Hoft, Oct 04 2022
Conjecture: T(n,k) is the n-th positive integer with k 2-dense sublists of divisors. - Omar E. Pol, Aug 25 2025

Examples

			Array begins:
   1,  3,  9, 21,  63, 147, 357,  903, 2499, 6069, ...
   2,  5, 15, 27,  81, 171, 399,  987, 2709, 6321, ...
   4,  7, 25, 33,  99, 189, 441, 1029, 2793, 6325, ...
   6, 10, 35, 39, 117, 207, 483, 1113, 2961, 6783, ...
   8, 11, 45, 51, 153, 243, 513, 1197, 3025, 6875, ...
  12, 13, 49, 55, 165, 261, 567, 1239, 3087, 6909, ...
  16, 14, 50, 57, 195, 275, 609, 1265, 3249, 7011, ...
  18, 17, 70, 65, 231, 279, 621, 1281, 3339, 7203, ...
  20, 19, 77, 69, 255, 297, 651, 1375, 3381, 7353, ...
  24, 22, 91, 75, 273, 333, 729, 1407, 3591, 7581, ...
  ...
[Lower right hand triangle of array completed by _Hartmut F. W. Hoft_, Oct 04 2022]
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    widthTable[n_, {r_, c_}] := Module[{k, list=Table[{}, c], parts}, For[k=1, k<=n, k++, parts=partsSRS[k]; If[parts<=c&&Length[list[[parts]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a240062T[n_, r_] := TableForm[widthTable[n, {r, r}]]
    a240062[6069, 10] (* data *)
    a240062T[7581, 10] (* 10 X 10 array - Hartmut F. W. Hoft, Oct 04 2022 *)

Extensions

a(n) > 128 from Michel Marcus, Apr 08 2014

A241008 Numbers n with the property that the number of parts in the symmetric representation of sigma(n) is even, and that all parts have width 1.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 27, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 76, 79, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Hartmut F. W. Hoft, Aug 07 2014

Keywords

Comments

The first eight entries in A071561 but not in this sequence are 75, 78, 102, 105, 114, 138, 174 & 175.
The first eight entries in A239929 but not in this sequence are 21, 27, 33, 39, 51, 55, 57 & 65.
The union of this sequence and A241010 equals A174905 (see link in A174905 for a proof). Updated by Hartmut F. W. Hoft, Jul 02 2015
Let n = 2^m * Product_{i=1..k} p_i^e_i = 2^m * q with m >= 0, k >= 0, 2 < p_1 < ... < p_k primes and e_i >= 1, for all 1 <= i <= k. For each number n in this sequence k > 0, at least one e_i is odd, and for any two odd divisors f < g of n, 2^(m+1) * f < g. Let the odd divisors of n be 1 = d_1 < ... < d_2x = q where 2x = sigma_0(q). The z-th region of the symmetric spectrum of n has area a_z = 1/2 * (2^(m+1) - 1) *(d_z + d_(2x+1-z)), for 1 <= z <= 2x. Therefore, the sum of the area of the regions equals sigma(n). For a proof see Theorem 6 in the link of A071561. - Hartmut F. W. Hoft, Sep 09 2015, Sep 04 2018
First differs from A071561 at a(43). - Omar E. Pol, Oct 06 2018

Crossrefs

Programs

  • Mathematica
    (* path[n] and a237270[n] are defined in A237270 *)
    atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]]
    Select[Range[100], atmostOneDiagonalsQ[#] && EvenQ[Length[a237270[#]]]&] (* data *)

A281007 Number of middle divisors of the n-th number that has middle divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 4, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 1, 2, 4, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Feb 11 2017

Keywords

Comments

Conjecture 1: also widths of the successive terraces that we can find descending by the main diagonal of the pyramid described in A245092. Hence, bisection of A281012.
Conjecture 2: also number of central subparts in the symmetric representation of sigma of the numbers j that have the property that the number of parts in the symmetric representation of sigma(j) is odd.
Conjecture 3: Partial sums give A282131.

Crossrefs

Programs

  • Mathematica
    DeleteCases[#, 0] &@ Table[Count[Divisors@ n, d_ /; Sqrt[n/2] <= d < Sqrt[2 n]], {n, 300}] (* Michael De Vlieger, Feb 12 2017 *)

Formula

a(n) = A067742(A071562(n)).

A303297 List of middle divisors: for every positive integer that has middle divisors, add its middle divisors to the sequence.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 5, 4, 3, 4, 5, 4, 6, 5, 4, 7, 5, 6, 4, 5, 7, 6, 5, 8, 6, 7, 5, 9, 6, 8, 7, 5, 6, 9, 7, 8, 6, 10, 7, 9, 8, 6, 11, 7, 10, 6, 8, 9, 7, 11, 8, 10, 9, 7, 12, 8, 11, 9, 10, 7, 13, 8, 12, 7, 9, 11, 10, 8, 13, 9, 12, 10, 11, 8, 14, 9, 13, 8, 10, 12, 15, 11, 9, 14, 8, 10, 13, 11, 12, 9, 15
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2018

Keywords

Comments

The middle divisors of k (see A299761) are the divisors in the half-open interval [sqrt(k/2), sqrt(k*2)), k >= 1.

Examples

			The middle divisor of 1 is 1, so a(1) = 1.
The middle divisor of 2 is 1, so a(2) = 1.
There are no middle divisors of 3.
The middle divisor of 4 is 2, so a(3) = 2.
There are no middle divisors of 5.
The middle divisors of 6 are 2 and 3, so a(4) = 2 and a(5) = 3.
There are no middle divisors of 7.
The middle divisor of 8 is 2, so a(6) = 2.
The middle divisor of 9 is 3, so a(7) = 3.
There are no middle divisors of 10.
There are no middle divisors of 11.
The middle divisors of 12 are 3 and 4, so a(8) = 3 and a(9) = 4.
		

Crossrefs

Concatenate the nonzero rows of A299761 (that is, the nonzero terms of A299761).

Programs

  • Mathematica
    Table[Select[Divisors@ n, Sqrt[n/2] <= # < Sqrt[2 n] &] /. {} -> Nothing, {n, 135}] // Flatten (* Michael De Vlieger, Jun 14 2018 *)
  • PARI
    lista(nn) = {my(list = List()); for (n=1, nn, my(v = select(x->((x >= sqrt(n/2)) && (x < sqrt(n*2))), divisors(n))); for (i=1, #v, listput(list, v[i]));); Vec(list);} \\ Michel Marcus, Mar 26 2023

A259179 Number of Dyck paths described in A237593 that contain the point (n,n) in the diagram of the symmetric representation of sigma.

Original entry on oeis.org

1, 2, 2, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 0, 4, 0, 1, 3, 0, 2, 0, 2, 3, 0, 1, 4, 0, 2, 0, 3, 0, 3, 0, 1, 1, 4, 0, 2, 0, 4, 0, 3, 0, 1, 2, 0, 4, 0, 2, 0, 0, 5, 0, 3, 0, 1, 3, 0, 4, 0, 2, 0, 1, 0, 5, 0, 2, 1, 0, 1, 4, 0, 4, 0, 2, 0, 2, 0, 5, 0, 3, 0, 0, 0, 1, 5, 0, 2, 2, 0, 2, 0, 3, 0, 5, 0, 3, 0, 1, 0, 0, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 11 2015

Keywords

Comments

Since the diagram of the symmetric representation of sigma is also the top view of the stepped pyramid described in A245092, and the diagram is also the top view of the staircase described in A244580, so we have that a(n) is also the height difference (or length of the vertical line segment) at the point (n,n) in the main diagonal of the mentioned structures.
a(n) is the number of occurrences of n in A240542. - Omar E. Pol, Dec 09 2016
Nonzero terms give A280919, the first differences of A071562. - Omar E. Pol, Apr 17 2018
Also first differences of A244367. Where records occur gives A279286. - Omar E. Pol, Apr 20 2020

Examples

			Illustration of initial terms:
--------------------------------------------------------
                           Diagram with 15 Dyck paths
n   A000203(n)  a(n)         to evaluate a(1)..a(10)
--------------------------------------------------------
.                         _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1        1        1      |_| | | | | | | | | | | | | | |
2        3        2      |_ _|_| | | | | | | | | | | | |
3        4        2      |_ _|  _|_| | | | | | | | | | |
4        7        0      |_ _ _|    _|_| | | | | | | | |
5        6        2      |_ _ _|  _|  _ _|_| | | | | | |
6       12        1      |_ _ _ _|  _| |  _ _|_| | | | |
7        8        3      |_ _ _ _| |_ _|_|    _ _|_| | |
8       15        0      |_ _ _ _ _|  _|     |  _ _ _|_|
9       13        3      |_ _ _ _ _| |      _|_| |
10      18        0      |_ _ _ _ _ _|  _ _|    _|
.                        |_ _ _ _ _ _| |  _|  _|
.                        |_ _ _ _ _ _ _| |_ _|
.                        |_ _ _ _ _ _ _| |
.                        |_ _ _ _ _ _ _ _|
.                        |_ _ _ _ _ _ _ _|
.
For n = 3 there are two Dyck paths that contain the point (3,3) so a(3) = 2.
For n = 4 there are no Dyck paths that contain the point (4,4) so a(4) = 0.
		

Crossrefs

Programs

  • Mathematica
    a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}]
    a259179[n_] := Module[{t=Table[0, n], k=1, d=1}, While[d<=n, t[[d]]+=1; d=a240542[++k]]; t] (* a(1..n) *)
    a259179[102] (* Hartmut F. W. Hoft, Aug 06 2020 *)

Extensions

More terms from Omar E. Pol, Dec 09 2016

A241010 Numbers n with the property that the number of parts in the symmetric representation of sigma(n) is odd, and that all parts have width 1.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 25, 32, 49, 50, 64, 81, 98, 121, 128, 169, 242, 256, 289, 338, 361, 484, 512, 529, 578, 625, 676, 722, 729, 841, 961, 1024, 1058, 1156, 1250, 1369, 1444, 1681, 1682, 1849, 1922, 2048, 2116, 2209, 2312, 2401, 2738, 2809, 2888, 3025, 3249, 3362, 3364, 3481, 3698, 3721, 3844
Offset: 1

Views

Author

Hartmut F. W. Hoft, Aug 07 2014

Keywords

Comments

The first eight entries in A071562 but not in this sequence are 6, 12, 15, 18, 20, 24, 28 & 30.
The first eight entries in A238443 but not in this sequence are 6, 12, 18, 20, 24, 28, 30 & 36.
The union of A241008 and of this sequence equals A174905 (for a proof see link in A174905).
Let n = 2^m * product(p_i^e_i, i=1,...,k) = 2^m * q with m >= 0, k >= 0, 2 < p_1, ...< p_k primes and e_i >= 1, for all 1 <= i <= k. For each number n in this sequence all e_i are even, and for any two odd divisors f < g of n, 2^(m+1) * f < g. The sum of the areas of the regions r(n, z) equals sigma(n). For a proof of the characterization and the formula see the theorem in the link below.
Numbers 3025 = 5^2 * 11^2 and 510050 = 2^1 * 5^2 * 101^2 are the smallest odd and even numbers, respectively, in the sequence with two distinct odd prime factors.
Among the 706 numbers in the sequence less than 1000000 (see link to the table) there are 143 that have two different odd prime factors, but none with three. All numbers with three different odd prime factors are larger than 500000000. Number 4450891225 = 5^2 * 11^2 * 1213^2 is in the sequence, but may not be the smallest one with three different odd prime factors. Note that 1213 is the first prime that extends the list of divisors of 3025 while preserving the property for numbers in this sequence.
The subsequence of numbers n = 2^(k-1) * p^2 satisfying the constraints above is A247687.
n = 3^(2*h) = 9^h = A001019(h), h>=0, is the smallest number for which the symmetric representation of sigma(n) has 2*h+1 regions of width one, for example for h = 1, 2, 3 and 5, but not for h = 4 in which case 3025 = 5^2 * 11^2 < 3^8 = 6561 is the smallest (see A318843). [Comment corrected by Hartmut F. W. Hoft, Sep 04 2018]
Computations using this characterization are more efficient than those of Dyck paths for the symmetric representations of sigma(n), e.g., the Mathematica code below.

Examples

			This irregular triangle presents in each column those elements of the sequence that have the same factor of a power of 2.
  row/col      2^0    2^1   2^2   2^3    2^4    2^5  ...
   2^k:          1      2     4     8     16     32  ...
   3^2:          9
   5^2:         25     50
   7^2:         49     98
   3^4:         81
  11^2:        121    242   484
  13^2:        169    338   676
  17^2:        289    578  1156  2312
  19^2:        361    722  1444  2888
  23^2:        529   1058  2116  4232
   5^4:        625   1250
   3^6:        729
  29^2:        841   1682  3364  6728
  31^2:        961   1922  3844  7688
  37^2:       1369   2738  5476 10952 21904
  41^2:       1681   3362  6724 13448 26896
  43^2:       1849   3698  7396 14792 29584
  47^2:       2209   4418  8836 17672 35344
   7^4:       2401   4802
  53^2:       2809   5618 11236 22472 44944
  5^2*11^2:   3025
  3^2*19^2:   3249
  59^2:       3481   6962 13924 27848 55696
  61^2:       3721   7442 14884 29768 59536
  67^2:       4489   8978 17956 35912 71824 143648
  3^2*23^2:   4761
  71^2:       5041
  ...
  5^2*101^2:225025 510050
  ...
Number 3025 = 5^2 * 11^2 is in the sequence since its divisors are 1, 5, 11, 25, 55, 121, 275, 605 and 3025. Number 6050 = 2^1 * 5^2 * 11^2 is not in the sequence since 2^2 * 5 > 11 while 5 < 11.
Number 510050 = 2^1 * 5^2 * 101^2 is in the sequence since its 9 odd divisors 1, 5, 25, 101, 505, 2525, 10201, 51005 and 225025 are separated by factors larger than 2^2. The areas of its 9 regions are 382539, 76515, 15339, 3939, 1515, 3939, 15339, 76515 and 382539. However, 2^2 * 5^2 * 101^2 is not in the sequence.
The first row is A000079.
The rows, except the first, are indexed by products of even powers of the odd primes satisfying the property, sorted in increasing order.
The first column is a subsequence of A244579.
A row labeled p^(2*h), h>=1 and p>=3 with p = A000040(n), has A098388(n) entries.
Starting with the second column, dividing the entries of a column by 2 creates a proper subsequence of the prior column.
See A259417 for references to other sequences of even powers of odd primes that are subsequences of column 1.
The first entry greater than 16 in column labeled 2^4 is 21904 since 37 is the first prime larger than 2^5. The rightmost entry in the row labeled 19^2 is 2888 in the column labeled 2^3 since 2^4 < 19 < 2^5.
		

Crossrefs

Cf. A000203, A174905, A236104, A237270 (symmetric representation of sigma(n)), A237271, A237593, A238443, A241008, A071562, A246955, A247687, A250068, A250070, A250071.

Programs

  • Mathematica
    (* path[n] and a237270[n] are defined in A237270 *)
    atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]]
    Select[Range[1000], atmostOneDiagonalsQ[#] && OddQ[Length[a237270[#]]]&] (* data *)
    (* more efficient code based on numeric characterization *)
    divisorPairsQ[m_, q_] := Module[{d = Divisors[q]}, Select[2^(m + 1)*Most[d] - Rest[d], # >= 0 &] == {}]
    a241010AltQ[n_] := Module[{m, q, p, e}, m=IntegerExponent[n, 2]; q=n/2^m; {p, e} = Transpose[FactorInteger[q]]; q==1||(Select[e, EvenQ]==e && divisorPairsQ[m, q])]
    a241010Alt[m_,n_] := Select[Range[m, n], a241010AltQ]
    a241010Alt[1,4000] (* data *)

Formula

Formula for the z-th region in the symmetric representation of n = 2^m * q in this sequence, 1 <= z <= sigma_0(q) and q odd: r(n, z) = 1/2 * (2^(m+1) - 1) * (d_z + d_(2*x+2-z)) where 1 = d_1 < ... < d_(2*x+1) = q are the odd divisors of n.

Extensions

More terms and further edited by Hartmut F. W. Hoft, Jun 26 2015 and Jul 02 2015 and corrected Oct 11 2015

A244580 Square array read by antidiagonals related to the symmetric representation of sigma.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 4, 4, 5, 6, 5, 4, 4, 5, 6, 7, 6, 5, 6, 5, 6, 7, 8, 7, 6, 6, 6, 6, 7, 8, 9, 8, 7, 6, 6, 6, 7, 8, 9, 10, 9, 8, 7, 8, 8, 7, 8, 9, 10, 11, 10, 9, 8, 8, 8, 8, 8, 9, 10, 11, 12, 11, 10, 9, 8, 9, 9, 8, 9, 10, 11, 12
Offset: 1

Views

Author

Omar E. Pol, Jul 04 2014

Keywords

Comments

The number of parts k in the square array is equal to A000203(k) hence the sum of parts k is equal to A064987(k).
The structure has a three-dimensional representation using polycubes. T(n,k) is the height of a column. The total area in the horizontal level z gives A000203(z).
The main diagonal gives A244367.

Examples

			.                         _ _ _ _ _ _ _ _ _
1,2,3,4,5,6,7,8,9...     |_| | | | | | | | |
2,2,3,4,5,6,7,8,9...     |_ _|_| | | | | | |
3,3,4,4,5,6,7,8,9...     |_ _|  _|_| | | | |
4,4,4,6,6,6,7,8,9...     |_ _ _|    _|_| | |
5,5,5,6,6,8,8,8,9...     |_ _ _|  _|  _ _|_|
6,6,6,6,8,8,9...         |_ _ _ _|  _| |
7,7,7,7,8,9,9...         |_ _ _ _| |_ _|
8,8,8,8,8...             |_ _ _ _ _|
9,9,9,9,9...             |_ _ _ _ _|
.
		

Crossrefs

Previous Showing 11-20 of 72 results. Next