cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A384517 Nonsquarefree numbers that are squarefree numbers raised to an even power.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 169, 196, 225, 256, 289, 361, 441, 484, 529, 625, 676, 729, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2401, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4096, 4225, 4356
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2025

Keywords

Comments

Differs from its subsequence A340674 by having the terms 64, 729, 1024, 4096, .... .
Numbers whose prime factorization exponents are equal and even.

Crossrefs

Intersection of A000290 and A072777.
Equals A072777 \ A384518.
A340674 is a subsequence.

Programs

  • Mathematica
    Select[Range[2, 100], SameQ @@ FactorInteger[#][[;;, 2]] &]^2
  • PARI
    isok(k) = {my(s, e = ispower(k, , &s)); !(e % 2) && issquarefree(s);}
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A384517(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1		
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return n+x-sum(g(integer_nthroot(x,e)[0])-1 for e in range(2,x.bit_length(),2))
        return bisection(f,n,n) # Chai Wah Wu, Jun 01 2025

Formula

a(n) = A062770(n)^2 = A072774(n+1)^2.
Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2*k)/zeta(4*k)-1) = Sum{k>=1} (A231327(k)/(A231273(k)*Pi^(2*k)) - 1) = 0.62022193512079649421... .

A384518 Nonsquarefree numbers that are squarefree numbers raised to an odd power.

Original entry on oeis.org

8, 27, 32, 125, 128, 216, 243, 343, 512, 1000, 1331, 2048, 2187, 2197, 2744, 3125, 3375, 4913, 6859, 7776, 8192, 9261, 10648, 12167, 16807, 17576, 19683, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 50653, 54872, 59319, 68921, 74088, 78125, 79507, 97336, 100000
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2025

Keywords

Comments

Subsequence of A097054 and first differs from it at n = 12: A097054(12) = 1728 = 2^6 * 3^3 is not a term of this sequence.
Numbers whose prime factorization exponents are equal, odd and larger than 1.

Crossrefs

Intersection of A072777 and A268335.
Equals A072777 \ A384517.
Subsequence of A097054.
Cf. A005117.

Programs

  • Mathematica
    Select[Range[10^5], Length[(u = Union[FactorInteger[#][[;; , 2]]])] == 1 && u[[1]] > 1 && OddQ[u[[1]]] &]
  • PARI
    isok(k) = {my(s, e = ispower(k, , &s)); e % 2 && issquarefree(s);}
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A384518(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1		
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return n+x-sum(g(integer_nthroot(x,e)[0])-1 for e in range(3,x.bit_length(),2))
        return bisection(f,n,n) # Chai Wah Wu, Jun 01 2025

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2*k+1)/zeta(4*k+2)-1) = 0.22841193284408713846... .

A076292 Perfect powers with squarefree root.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 169, 196, 216, 225, 243, 256, 289, 343, 361, 441, 484, 512, 529, 625, 676, 729, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1681, 1764, 1849, 2048, 2116, 2187
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 06 2002

Keywords

Examples

			A001597(17) = 144 = (3*2^2)^2 is not a term.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := n == 1 || Length[(u = Union[FactorInteger[n][[;;,2]]])] == 1 && u[[1]] > 1; Select[Range[2000], q] (* Amiram Eldar, Jan 01 2022 *)
  • PARI
    is(n)=n==1 || (ispower(n,,&n) && issquarefree(n)) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A025478(a(n)) = A007947(a(n)).

A375934 Numbers whose prime factorization has a second-largest exponent that equals 1.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2024

Keywords

Comments

First differs from A332785 at n = 112: A332785(112) = 360 = 2^3 * 3^2 * 5 is not a term of this sequence.
First differs from A317616 at n = 38: A317616(38) = 144 = 2*4 * 3^2 is not a term of this sequence.
Numbers k such that A375933(k) = 1.
Numbers of the form s1 * s2^e, where s1 and s2 are coprime squarefree numbers that are both larger than 1, and e >= 2.
The asymptotic density of this sequence is Sum_{e>=2} d(e) = 0.36113984820338109927..., where d(e) = Product_{p prime} (1 - 1/p^2 + 1/p^e - 1/p^(e+1)) - Product_{p prime} (1 - 1/p^(e+1)) is the asymptotic density of terms k with A051903(k) = e >= 2.

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[0, Max[Select[e, # < Max[e] &]]] == 1]; Select[Range[300], q]
  • PARI
    is(n) = if(n == 1, 0, my(e = factor(n)[,2]); e = select(x -> x < vecmax(e), e); if(#e == 0, 0, vecmax(e) == 1));

Formula

A051904(a(n)) = 1.
A051903(a(n)) >= 2.
A001221(a(n)) = 2.

A375143 Numbers whose prime factorization has a minimum exponent that is larger than 1 and is 1 less than the maximum exponent.

Original entry on oeis.org

72, 108, 200, 392, 432, 500, 648, 675, 968, 1125, 1323, 1352, 1372, 1800, 2000, 2312, 2592, 2700, 2888, 3087, 3267, 3528, 3888, 4232, 4500, 4563, 5000, 5292, 5324, 5400, 5488, 6125, 6728, 7688, 7803, 8575, 8712, 8788, 9000, 9747, 9800, 10125, 10584, 10952, 11979
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Numbers k such that 2 <= A051904(k) = A051903(k) - 1.
Numbers that are product of two coprime nonsquarefree powers of squarefree numbers (A072777) with consecutive exponents.

Examples

			72 = 2^3 * 3^2 is a term since A051904(72) = 2 is larger than 1 and is 1 less than A051903(72) = 3.
		

Crossrefs

Subsequence of A001694.
Subsequences: A143610, A167747 \ {1, 2, 12}, A093136 \ {1, 2, 20}, A179666, A179702, A190472, A375073.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, 2 <= Min[e] == Max[e] - 1]; Select[Range[12000], q]
  • PARI
    is(k) = {my(e = factor(k)[,2]); k > 1 && 2 <= vecmin(e) && vecmin(e) + 1 == vecmax(e);}

Formula

Sum_{n>=1} 1/a(n) = Sum_{k>=2} f(k) = 0.053695635500385312854..., where f(k) = Product_{p prime} (1 + 1/p^k + 1/p^(k+1)) - zeta(k)/zeta(2*k) - zeta(k+1)/zeta(2*k+2) + 1 is the sum of reciprocals of the subset of numbers m with A051904(m) = k.
Previous Showing 11-15 of 15 results.