cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A229953 Numbers k for which k = sigma(sigma(x)) = sigma(sigma(y)) for some x and y such that k = x + y.

Original entry on oeis.org

4, 8, 32, 60, 128, 8192, 43200, 69360, 120960, 131072, 524288, 4146912, 6549984, 12927600, 13335840, 16329600, 34715520, 51603840, 57879360, 59633280, 107775360, 160797000, 169155840, 252067200, 371226240, 391789440, 436230144, 439883136, 489888000, 657296640
Offset: 1

Views

Author

Paolo P. Lava, Oct 04 2013

Keywords

Comments

A072868 is a subsequence of this sequence. Any term x of A072868 can be expressed as x = 2*sigma(sigma(x/2)).
Note the analogy with amicable pair sums (A180164) which satisfy a similar condition: k = sigma(x) = sigma(y) where k = x + y. - Michel Marcus, Oct 07 2013
When terms do not belong to A072868, then they belong to A159886, and the (x,y) couples are (23,37), (14999,28201), (34673,34687), (55373,65587), (2056961,2089951), (2458187,4091797), (4586987,8340613), (5174363,8161477), (6204767,10124833), (15788453,18927067), (25748273,25855567), (20699927,37179433), (22239647,37393633), ... - Michel Marcus, Oct 08 2013

Examples

			4 = 2 + 2 = 2*sigma(sigma(2)).
8 = 4 + 4 = 2*sigma(sigma(4)).
32 = 16 + 16 = 2*sigma(sigma(16)).
60 = 23 + 37 = sigma(sigma(23)) = sigma(sigma(37)).
128 = 64 + 64 = 2*sigma(sigma(64)).
8192 = 4096 + 4096 = 2*sigma(sigma(4096)).
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local j,n;
    for n from 1 to q do for j from 1 to trunc(n/2) do
    if sigma(sigma(j))=sigma(sigma(n-j)) and sigma(sigma(j))=n then print(n);
    fi; od; od; end: P(10^6);

Extensions

a(7)-a(20) from Giovanni Resta, Oct 06 2013
a(21)-a(30) from Donovan Johnson, Oct 08 2013

A300658 Numbers m that divide sigma(sigma(m) - m) where sigma is the sum of divisors function (A000203).

Original entry on oeis.org

4, 6, 8, 28, 32, 36, 78, 84, 128, 168, 252, 496, 504, 532, 756, 1488, 2808, 3720, 4464, 5928, 8128, 8192, 13392, 24384, 61236, 73152, 78120, 131072, 183708, 217728, 219456, 425880, 458640, 524288, 1084752, 1834560, 2204280, 3254256, 6120432, 6386688, 11007360
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2018

Keywords

Comments

Numbers m that divide A072869(m).
Numbers m such that sigma(sigma(m)-m) = k*m for k = 1 - 5:
k = 1: 4, 8, 32, 128, 8192, 131072, 524288, 2147483648, ... (A072868),
k = 2: 6, 28, 36, 496, 8128, 33550336, 8589869056, ... (A247111),
k = 3: 78, 532, ...,
k = 4: 84, 252, 756, 1488, 4464, 13392, 24384, 61236, 73152, ...,
k = 5: 168, 2808, 5928, 6120432, ...
Perfect numbers (A000396) are terms.
Corresponding values of (sigma(sigma(m) - m)) / m for numbers m from this sequence: 1, 2, 1, 2, 1, 2, 3, 4, 1, 5, 4, 2, 6, 3, 4, 4, 5, 7, 4, 5, 2, 1, 4, 4, 4, 4, 10, 1, 4, 8, 4, 12, 10, 1, 4, 11, 9, ...
Sequence of the smallest numbers k such that sigma(sigma(k) - k) = n*k for n >= 1: 4, 6, 78, 84, 168, 504, 3720, 217728, 2204280, 78120, 1834560, 425880, ...

Examples

			6 is a term because sigma(sigma(6) - 6) / 6 = 12 / 6 = 2 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..1000000] | SumOfDivisors(SumOfDivisors(n)- n) mod n eq 0];
    
  • PARI
    isok(n) = (n!=1) && !(sigma(sigma(n)-n) % n); \\ Michel Marcus, Mar 25 2018

A387218 Numbers k such that k = sigma(s(s(s(k)))) where s(k) = sigma(k)-k and sigma = A000203.

Original entry on oeis.org

44, 248, 11904, 565838, 583730, 16588800
Offset: 1

Views

Author

Hugo Cuéllar, Aug 22 2025

Keywords

Examples

			k = 44:
s(44) = sigma(44) - 44 = 84 - 44 = 40,
s(40) = sigma(40) - 40 = 90 - 40 = 50,
s(50) = sigma(50) - 50 = 93 - 50 = 43,
sigma(43) = 44.
k = 248:
s(248) = sigma(248) - 248 = 480 - 248 = 232,
s(232) = sigma(232) - 232 = 450 - 232 = 218,
s(218) = sigma(218) - 218 = 330 - 218 = 112,
sigma(112) = 248.
k = 11904:
s(11904) = sigma(11904) - 11904 = 32640 - 11904 = 20736,
s(20736) = sigma(20736) - 20736 = 61831 - 20736 = 41095,
s(41095) = sigma(41095) - 41095 = 49320 - 41095 = 8225,
sigma(8225) = 11904.
		

Crossrefs

Cf. A000203 (sigma(n)), A001065 (s(n)).
Cf. A072868 (sigma(sigma(k)-k) = k).

Programs

  • Mathematica
    s[k_]:=DivisorSigma[1,k]-k;Select[Range[10^6],DivisorSigma[1,s[s[s[#]]]]==#&] (* James C. McMahon, Aug 30 2025 *)
  • PARI
    isok(k) = my(x=sigma(k)-k); if (x>0, x=sigma(x)-x; if (x>0, x=sigma(x)-x; if (x>0, sigma(x) == k))); \\ Michel Marcus, Aug 24 2025

Extensions

a(6) from Michel Marcus, Aug 24 2025
Previous Showing 11-13 of 13 results.