cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A226641 Number of ways to express 2/n as Egyptian fractions in just three terms; i.e., 2/n = 1/x + 1/y + 1/z satisfying 1<=x<=y<=z.

Original entry on oeis.org

1, 3, 8, 10, 12, 21, 17, 28, 26, 36, 25, 57, 20, 42, 81, 70, 25, 79, 32, 96, 86, 62, 42, 160, 53, 59, 89, 136, 33, 196, 37, 128, 103, 73, 185, 211, 32, 80, 160, 292, 40, 245, 40, 157, 235, 93, 60, 366, 85, 156, 147, 174, 42, 230, 223, 340, 143, 106, 76, 497, 34, 90, 331, 269, 206, 322, 50, 211, 175, 453, 72, 538, 37, 85, 332, 216, 260, 378, 69, 604, 167, 121, 79, 623, 204, 104, 203, 473, 59, 648, 253, 204, 166, 135, 318, 706, 46, 227, 427, 437
Offset: 1

Views

Author

Keywords

Crossrefs

See A073101 for the 4/n conjecture due to Erdős and Straus.

Programs

  • Mathematica
    a[n_] := Length@ Solve[ 2/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Array[a, 70]

A226642 Number of ways to express 3/n as Egyptian fractions in just three terms; i.e., 3/n = 1/x + 1/y + 1/z satisfying 1<=x<=y<=z.

Original entry on oeis.org

1, 3, 3, 6, 10, 10, 9, 20, 21, 21, 16, 28, 11, 33, 36, 31, 24, 57, 11, 68, 42, 35, 23, 70, 37, 51, 79, 76, 30, 96, 17, 65, 62, 50, 138, 160, 18, 51, 59, 142, 34, 136, 24, 140, 196, 46, 32, 128, 43, 98, 73, 111, 46, 211, 111, 192, 80, 63, 46, 292, 24, 81, 245
Offset: 1

Views

Author

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdős and Straus.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ Solve[ 3/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Array[f, 70]

A226644 Number of ways to express 5/n as Egyptian fractions in just three terms; i.e., 5/n = 1/x + 1/y + 1/z satisfying 1<=x<=y<=z.

Original entry on oeis.org

0, 1, 2, 4, 3, 4, 4, 7, 12, 10, 3, 17, 6, 21, 21, 12, 6, 26, 13, 28, 22, 18, 9, 61, 36, 18, 24, 48, 22, 57, 5, 27, 38, 26, 42, 60, 11, 24, 56, 70, 6, 71, 13, 79, 79, 19, 12, 99, 41, 96, 38, 55, 12, 84, 62, 86, 50, 41, 36, 160, 6, 26, 104, 57, 59, 76, 16, 71, 74, 136, 12, 158, 22, 60, 196, 52, 65, 103, 25, 128, 46, 30, 15, 224, 73, 32, 58, 141, 38, 211, 71, 67, 59, 41, 80, 151, 24, 97, 222, 292
Offset: 1

Views

Author

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdős and Straus.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ Solve[ 5/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Array[f, 70]

A226646 Number of ways to express m/n as Egyptian fractions in just three terms, that is, m/n = 1/x + 1/y + 1/z satisfying 1 <= x <= y <= z and read by antidiagonals.

Original entry on oeis.org

3, 1, 10, 1, 3, 21, 0, 3, 8, 28, 0, 1, 3, 10, 36, 0, 1, 3, 6, 12, 57, 0, 1, 2, 3, 10, 21, 42, 0, 0, 1, 4, 2, 10, 17, 70, 0, 0, 1, 3, 3, 8, 9, 28, 79, 0, 0, 0, 1, 3, 4, 7, 20, 26, 96, 0, 0, 1, 1, 2, 3, 4, 10, 21, 36, 62, 0, 0, 0, 1, 1, 7, 1, 7, 6, 21, 25, 160, 0, 0, 0, 1, 0, 3, 3, 6, 12, 12, 16, 57, 59
Offset: 1

Views

Author

Keywords

Comments

See A073101 for the 4/n conjecture due to Erdös and Straus.
The first upper diagonal is 10, 8, 6, 2, 4, 1, 2, 1, 2, 0, 3, 0, 0, 1, 0, 0, 1, 0, 1, 0,... .
The main diagonal is: 3, 3, 3, 3, 3, 3, ... since 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/4 + 1/4 = 1/3 + 1/3 + 1/3. See A002966(3).
The first lower diagonal is 1, 3, 3, 4, 3, 7, 3, 5, 4, 6, 3, 10, 3, 6, 6, 6, 3, 9, 3, 9, ... .
The antidiagonal sum is 3, 11, 25, 39, 50, 79, 79, 104, 131, 157, 140, 229, 169, 220, 295, 282, ... .

Examples

			../n
m/ 1...2...3...4...5...6...7...8...9..10..11...12..13...14...15 =Allocation nbr.
.1 3..10..21..28..36..57..42..70..79..96..62..160..59..136..196 A004194
.2 1...3...8..10..12..21..17..28..26..36..25...57..20...42...81 A226641
.3 1...3...3...6..10..10...9..20..21..21..16...28..11...33...36 A226642
.4 0...1...3...3...2...8...7..10...6..12...9...21...4...17...39 A192787
.5 0...1...2...4...3...4...4...7..12..10...3...17...6...21...21 A226644
.6 0...1...1...3...3...3...1...6...8..10...7...10...1....9...12 A226645
.7 0...0...1...1...2...7...3...2...3...5...2...13...8...10....9 n/a
.8 0...0...0...1...1...3...3...3...1...2...0....8...3....7...19 n/a
.9 0...0...1...1...0...3...2...5...3...2...0....6...2....4...10 n/a
10 0...0...0...1...1...2...0...4...4...3...0....4...1....4....8 n/a
Triangle (by antidiagonals):
  {3},
  {1, 10},
  {1, 3, 21},
  {0, 3, 8, 28},
  {0, 1, 3, 10, 36},
  {0, 1, 3, 6, 12, 57},
  ...
		

Crossrefs

Programs

  • Mathematica
    f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Table[f[n, m - n + 1], {m, 12}, {n, m, 1, -1}] // Flatten

A257840 y-value of the lexicographically first integer solution (x,y,z) of 4/n = 1/x + 1/y + 1/z with 0 < x < y < z, or 0 if there is no such solution. Corresponding x and z values are in A257839 and A257841.

Original entry on oeis.org

0, 0, 4, 3, 4, 7, 15, 7, 10, 16, 34, 13, 18, 29, 61, 21, 30, 46, 96, 31, 43, 67, 139, 43, 60, 92, 190, 57, 78, 121, 249, 73, 100, 154, 316, 91, 124, 191, 391, 111, 154, 232, 474, 133, 181, 277, 565, 157, 99, 326, 664, 183, 248, 379, 771, 211, 286, 436, 886, 241, 326, 497, 1009, 273, 370, 562, 1140, 307, 415, 631, 1279, 343, 210, 704, 1426, 381, 514, 781, 1581, 421
Offset: 1

Views

Author

M. F. Hasler, May 16 2015

Keywords

Comments

See A073101 for more details.
This differs from A075246 starting with a(89)=690 vs A075246(89)=306, corresponding to the representations 4/89 = 1/23 + 1/690 + 1/61410 = 1/24 + 1/306 + 1/108936.

Crossrefs

Programs

  • PARI
    apply( {A257840(n, t)=for(x=n\4+1, 3*n\4, for(y=max(1\t=4/n-1/x, x)+1, ceil(2/t)-1, numerator(t-1/y)==1 && return(y)))}, [1..99]) \\ improved by M. F. Hasler, Jul 03 2022

A292624 Number of solutions to 4/p = 1/x + 1/y + 1/z in positive integers, where p is the n-th prime.

Original entry on oeis.org

3, 12, 12, 36, 48, 24, 24, 60, 120, 42, 108, 54, 42, 78, 198, 78, 156, 66, 96, 234, 42, 216, 156, 60, 48, 96, 156, 144, 90, 78, 192, 186, 102, 210, 108, 180, 144, 138, 384, 156, 276, 102, 396, 36, 138, 246, 174, 342, 216, 120, 114, 630, 48, 300
Offset: 1

Views

Author

Hugo Pfoertner, Sep 20 2017

Keywords

Comments

Corrected version of A192788.

Examples

			a(3) = 12 because 4/(3rd prime) = 4/5 can be expressed in the following 12 ways:
  4/5 =  1/2  + 1/4  + 1/20
  4/5 =  1/2  + 1/5  + 1/10
  4/5 =  1/2  + 1/10 + 1/5
  4/5 =  1/2  + 1/20 + 1/4
  4/5 =  1/4  + 1/2  + 1/20
  4/5 =  1/4  + 1/20 + 1/2
  4/5 =  1/5  + 1/2  + 1/10
  4/5 =  1/5  + 1/10 + 1/2
  4/5 =  1/10 + 1/2  + 1/5
  4/5 =  1/10 + 1/5  + 1/2
  4/5 =  1/20 + 1/2  + 1/4
  4/5 =  1/20 + 1/4  + 1/2
		

References

  • For references and links see A192787.

Crossrefs

Programs

  • Mathematica
    checkmult[a_, b_, c_] := If[Denominator[c] == 1, If[a == b && a == c && b == c, Return[1], If[a != b && a != c && b != c, Return[6], Return[3]]], Return[0]];
    a292581[n_] := Module[{t, t1, s, a, b, c, q = Quotient}, t = 4/n; s = 0; For[a = q[1, t] + 1, a <= q[3, t], a++, t1 = t - 1/a; For[b = Max[q[1, t1] + 1, a], b <= q[2, t1], b++, c = 1/(t1 - 1/b); s += checkmult[a, b, c]]]; Return[s]];
    Reap[For[n = 1, n <= 54, n++, Print[n, " ", an = a292581[Prime[n]]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Dec 02 2018, adapted from PARI *)
  • PARI
    checkmult (a,b,c) =
    {
      if(denominator(c)==1,
         if(a==b && a==c && b==c,
            return(1),
            if(a!=b && a!=c && b!=c,
               return(6),
               return(3)
              )
           ),
         return(0)
         )
    }
    a292624(n) =
    {
      local(t, t1, s, a, b, c);
      t = 4/prime(n);
      s = 0;
      for (a=1\t+1, 3\t,
         t1=t-1/a;
         for (b=max(1\t1+1,a), 2\t1,
              c=1/(t1-1/b);
              s+=checkmult(a,b,c);
             )
          );
      return(s);
    }
    for (n=1,54,print1(a292624(n),", "))

Formula

a(n) = A292581(A000040(n)).

A349083 The number of three-term Egyptian fractions of rational numbers x/y, 0 < x/y < 1, ordered as below. The sequence is the number of (p,q,r) such that x/y = 1/p + 1/q + 1/r where p, q, and r are integers with p < q < r.

Original entry on oeis.org

6, 15, 5, 22, 6, 3, 30, 9, 7, 2, 45, 15, 6, 5, 1, 36, 14, 6, 5, 3, 1, 62, 22, 16, 6, 5, 3, 2, 69, 21, 15, 4, 9, 5, 2, 1, 84, 30, 15, 9, 6, 7, 2, 2, 1, 56, 22, 13, 7, 3, 5, 2, 0, 0, 0, 142, 45, 22, 15, 12, 6, 9, 5, 3, 1, 2, 53, 17, 8, 4, 5, 1, 6, 3, 1, 1, 1, 0, 124, 36, 27, 14, 18, 6, 6, 5, 2, 3, 1, 1, 0
Offset: 1

Views

Author

Jud McCranie, Nov 09 2021

Keywords

Comments

The sequence are the terms in a triangle, where the rows correspond to the denominator of the rational number (starting with row 2, column 1) and the columns correspond to the numerators:
x = 1 2 3 4 5 Rationals x/y:
Row 1: (y=2) 6 1/2
Row 2: (y=3) 15, 5 1/3, 2/3
Row 3: (y=4) 22, 6, 3 1/4, 2/4, 3/4
Row 4: (y=5) 30, 9, 7, 2 1/5, 2/5, 3/5, 4/5
Row 5: (y=6) 45, 15, 6, 5, 1 1/6, 2/6, 3/6, 4/6, 5/6
Alternatively, order the rational numbers, x/y, 0 < x/y < 1, in this order: 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, 1/5, 2/5, ... The numerators of the n-th rational number are A002260(n) and the denominators are A003057(n).

Examples

			The sixth rational number is 3/4;
  3/4 = 1/2 + 1/5 + 1/20
      = 1/2 + 1/6 + 1/12
      = 1/3 + 1/4 + 1/5,
so a(6)=3.
		

Crossrefs

Programs

  • PARI
    Efrac3(x,y)=sum(p=if(y%x,y\x,y\x+1),3*y\x, my(N=x/y-1/p); sum(q=max(if(numerator(N)==1,1\N+1,1\N),p+1),2\N, my(M=N-1/q,r=1/M); type(r)=="t_INT" && qCharles R Greathouse IV, Nov 09 2021

A075785 Number of ways to express 3/n as Egyptian fractions in just three terms.

Original entry on oeis.org

0, 1, 1, 3, 7, 6, 6, 16, 15, 15, 13, 22, 8, 27, 30, 26, 21, 45, 8, 59, 36, 29, 20, 62, 32, 45, 69, 67, 27, 84, 14, 59, 56, 44, 129, 142, 15, 45, 53, 130, 31, 124, 21, 131, 178, 40, 29, 118, 38, 88, 67, 102, 43, 191, 102, 180, 74, 57, 43, 274, 21, 75, 227, 86, 144, 145, 23, 121, 87
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Needs["MyOwn`Egypt`"]; Table[ Length[ EgyptianFraction[3/n, Method -> Lexicographic, MaxTerms -> 3, MinTerms -> 3, Duplicates -> Disallow, OutputFormat -> Plain]], {n, 5, 70}]
    f[n_] := Length@ Solve[3/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 69] (* Robert G. Wilson v, Jul 17 2013 *)

A257839 Smallest possible x such that 4/n = 1/x + 1/y + 1/z with 0 < x < y < z all integers, or 0 if there is no such solution. Corresponding y and z values are in A257840 and A257841.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 20, 19, 19, 20, 20, 20, 20, 21
Offset: 1

Views

Author

M. F. Hasler, May 16 2015

Keywords

Comments

Otherwise said, x-value of the lexicographically first solution (x,y,z) to the given equation.
See A073101 for more details about these sequences related to the Erdős-Straus conjecture.
This differs from A075245 starting with a(89)=23 vs A075245(89)=24, respective solutions being 1/23 + 1/690 + 1/61410 = 1/24 + 1/306 + 1/108936 = 4/89.

Crossrefs

Programs

  • PARI
    apply( {A257839(n, t)=for(x=n\4+1, 3*n\4, for(y=max(1\t=4/n-1/x, x)+1, ceil(2/t)-1, numerator(t-1/y)==1 && return(x)))}, [1..99]) \\ improved by M. F. Hasler, Jul 03 2022

Formula

Conjecture: a(n) = floor(n/4) + d with d = 1 for all n > 2 except some n = 24k + 1 (k = 2, 3, 7, 8, 10, 13, 15, 17, 18, 23, 25, 28, 30, 32, 33, 37, 40, 43, ...) where d = 2. - M. F. Hasler, Jul 03 2022

A257841 z-value of the lexicographically first solution (x,y,z) of 4/n = 1/x + 1/y + 1/z with 0 < x < y < z all integers, or 0 if there is no such solution. Corresponding x and y values are in A257839 and A257840.

Original entry on oeis.org

0, 0, 12, 6, 20, 42, 210, 42, 90, 240, 1122, 156, 468, 812, 3660, 420, 510, 2070, 9120, 930, 1806, 4422, 19182, 1806, 2100, 8372, 35910, 3192, 9048, 14520, 61752, 5256, 9900, 23562, 99540, 8190, 22940, 36290, 152490, 12210, 6314, 53592, 224202, 17556, 32580, 76452, 318660, 24492, 9702, 105950, 440232, 33306, 92008, 143262, 593670, 44310, 81510, 189660, 784110, 57840
Offset: 1

Views

Author

M. F. Hasler, May 16 2015

Keywords

Comments

See A073101 for more details.
This differs from A075247 starting with a(89) = 61410 vs. A075247(89) = 108936, corresponding to the representations 4/89 = 1/23 + 1/690 + 1/61410 = 1/24 + 1/306 + 1/108936.

Crossrefs

Programs

  • PARI
    apply( {A257841(n, t)=for(x=n\4+1, 3*n\4, for(y=max(1\t=4/n-1/x, x)+1, ceil(2/t)-1, numerator(t-1/y)==1 && return(y/(t*y-1))))}, [1..99]) \\ improved by M. F. Hasler, Jul 03 2022
Previous Showing 11-20 of 31 results. Next