cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A255964 Five-digit distinct-digit zeroless primes.

Original entry on oeis.org

12347, 12379, 12437, 12457, 12473, 12479, 12487, 12497, 12539, 12547, 12569, 12583, 12589, 12637, 12647, 12653, 12659, 12689, 12697, 12739, 12743, 12763, 12853, 12893, 12953, 12967, 12973, 12983, 13249, 13259, 13267, 13297, 13457
Offset: 1

Views

Author

Zak Seidov, Mar 12 2015

Keywords

Comments

The last term is a(1610)=98731.
Intersection of A038618 and A074671. - Michel Marcus, Mar 16 2015

Crossrefs

Cf. A038618 (zeroless primes), A074671 (5-digit distinct-digit primes).

Programs

  • Mathematica
    f[n_] := Block[{d = DigitCount@ n}, And[Plus @@ d == 5, Last@ d == 0, Max@ d == 1, PrimeQ@ n]]; Select[Range[10000, 99999], f] (* or *) Select[FromDigits /@ Permutations[Range[1, 9], {5}], PrimeQ] (* Michael De Vlieger, Mar 12 2015 *)

A256339 Distinct-digit primes that are concatenation of prime(m) and m for some m.

Original entry on oeis.org

53, 239, 6719, 7321, 4073561, 6257813, 6521843, 85271063
Offset: 1

Views

Author

Zak Seidov, Mar 25 2015

Keywords

Comments

The last term is a(8) = 85271063 (prime) because all 8 digits are different and m=1063 with 8527=prime(m).

Crossrefs

Subsequence of A029743 (distinct-digit primes).

Programs

  • Mathematica
    Select[FromDigits[IntegerDigits[Prime@ #]~Join~IntegerDigits@ #] & /@
    Range@ 1200, PrimeQ@ # && Max@ DigitCount@ # == 1 &] (* Michael De Vlieger, Mar 25 2015 *)
Previous Showing 11-12 of 12 results.