A344337 a(n) = 9^omega(n), where omega(n) is the number of distinct primes dividing n.
1, 9, 9, 9, 9, 81, 9, 9, 9, 81, 9, 81, 9, 81, 81, 9, 9, 81, 9, 81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 729, 9, 9, 81, 81, 81, 81, 9, 81, 81, 81, 9, 729, 9, 81, 81, 81, 9, 81, 9, 81, 81, 81, 9, 81, 81, 81, 81, 81, 9, 729, 9, 81, 81, 9, 81, 729, 9, 81, 81, 729, 9, 81, 9, 81, 81, 81
Offset: 1
Crossrefs
Programs
-
Mathematica
Table[9^PrimeNu[n], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
-
PARI
a(n) = 9^omega(n);
-
PARI
a(n) = prod(k=1, #f=factor(n)[, 2], 9);
-
PARI
a(n) = sumdiv(n, d, moebius(d)^2*numdiv(d)^3);
Formula
Multiplicative with a(p^e) = 9.
a(n) = Sum_{d|n} mu(d)^2 * tau(d)^3.
Dirichlet g.f.: Product_{p prime} (1 + 9/(p^s-1)). - Amiram Eldar, Sep 19 2023
Comments