cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A344337 a(n) = 9^omega(n), where omega(n) is the number of distinct primes dividing n.

Original entry on oeis.org

1, 9, 9, 9, 9, 81, 9, 9, 9, 81, 9, 81, 9, 81, 81, 9, 9, 81, 9, 81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 729, 9, 9, 81, 81, 81, 81, 9, 81, 81, 81, 9, 729, 9, 81, 81, 81, 9, 81, 9, 81, 81, 81, 9, 81, 81, 81, 81, 81, 9, 729, 9, 81, 81, 9, 81, 729, 9, 81, 81, 729, 9, 81, 9, 81, 81, 81
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

k^omega(n): A034444 (k=2), A074816 (k=3), A082476 (k=5), this sequence (k=9).

Programs

  • Mathematica
    Table[9^PrimeNu[n], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = 9^omega(n);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 9);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^2*numdiv(d)^3);

Formula

a(n) = A001019(A001221(n)).
Multiplicative with a(p^e) = 9.
a(n) = Sum_{d|n} mu(d)^2 * tau(d)^3.
Dirichlet g.f.: Product_{p prime} (1 + 9/(p^s-1)). - Amiram Eldar, Sep 19 2023

A375230 The total number of infinitary divisors of the infinitary divisors of n.

Original entry on oeis.org

1, 3, 3, 3, 3, 9, 3, 9, 3, 9, 3, 9, 3, 9, 9, 3, 3, 9, 3, 9, 9, 9, 3, 27, 3, 9, 9, 9, 3, 27, 3, 9, 9, 9, 9, 9, 3, 9, 9, 27, 3, 27, 3, 9, 9, 9, 3, 9, 3, 9, 9, 9, 3, 27, 9, 27, 9, 9, 3, 27, 3, 9, 9, 9, 9, 27, 3, 9, 9, 27, 3, 27, 3, 9, 9, 9, 9, 27, 3, 9, 3, 9, 3, 27
Offset: 1

Views

Author

Amiram Eldar, Aug 06 2024

Keywords

Crossrefs

Similar sequences: A007425 (analogous with all the divisors), A074816 (unitary analog).

Programs

  • Mathematica
    f[p_, e_] := 3^DigitCount[e, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 3^hammingweight(x), factor(n)[,2]));

Formula

a(n) = Sum_{d infinitary divisor of n} A037445(d).
Multiplicative with a(p^e) = 3^A000120(e).
a(n) = 3^A064547(n).
a(n) = A007425(n) if and only if n is squarefree (A005117).
a(n) = A074816(n) if and only if n is in A138302.

A340227 Number of pairs of divisors of n, (d1,d2), such that d1 < d2 and d1*d2 is squarefree.

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 4, 1, 1, 4, 1, 4, 4, 4, 1, 4, 1, 4, 1, 4, 1, 13, 1, 1, 4, 4, 4, 4, 1, 4, 4, 4, 1, 13, 1, 4, 4, 4, 1, 4, 1, 4, 4, 4, 1, 4, 4, 4, 4, 4, 1, 13, 1, 4, 4, 1, 4, 13, 1, 4, 4, 13, 1, 4, 1, 4, 4, 4, 4, 13, 1, 4, 1, 4, 1, 13, 4, 4, 4, 4, 1, 13
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 01 2021

Keywords

Comments

If n = p where p is prime, the only pair of divisors of n such that d1 < d2 is (1,p). Since the product 1*p = p is squarefree, this satisfies the constraints. Thus, a(p) = 1 for all p. - Wesley Ivan Hurt, May 21 2021

Examples

			a(28) = 4; (1,2), (1,7), (1,14), (2,7)
a(29) = 1; (1,29)
a(30) = 13; (1,2), (1,3), (1,5), (1,6), (1,10), (1,15), (1,30), (2,3), (2,5), (2,15), (3,5), (3,10), (5,6)
a(31) = 1; (1,31)
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq((3^nops(factorset(n))-1)/2, n=1..100); # Ridouane Oudra, Jan 27 2025
  • Mathematica
    Table[Sum[Sum[MoebiusMu[i*k]^2 (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}]

Formula

Sum_{d1|n, d2|n, d1A008683).
a(n) = (A074816(n) - 1)/2. - Ridouane Oudra, Jan 27 2025
Previous Showing 11-13 of 13 results.