Original entry on oeis.org
1, 189, 21546, 1928934, 149767947, 10598527863, 703442942532, 44583546335328, 2730727849782933, 162985193544670497, 9536099260315021758, 549348981049383669882, 31261349005300855653759
Offset: 0
A154715
Triangle interpolating between the subsets of an n-set (A000079) and the trees on n labeled nodes (A000272) (read by rows).
Original entry on oeis.org
1, 2, 3, 4, 18, 16, 8, 81, 192, 125, 16, 324, 1536, 2500, 1296, 32, 1215, 10240, 31250, 38880, 16807, 64, 4374, 61440, 312500, 699840, 705894, 262144, 128, 15309, 344064, 2734375, 9797760, 17294403, 14680064, 4782969
Offset: 0
Triangle begins as:
1;
2, 3;
4, 18, 16;
8, 81, 192, 125;
16, 324, 1536, 2500, 1296;
32, 1215, 10240, 31250, 38880, 16807;
64, 4374, 61440, 312500, 699840, 705894, 262144;
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Harlan J. Brothers, Pascal's triangle, Sidi polynomials, and powers of e, Missouri J. Math. Sci. (2025) Vol. 37, No. 1, 67-78.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874. Eq. (4.10), p. 862.
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*(k+2)^n ))); # G. C. Greubel, May 09 2019
-
[[Binomial(n,k)*(k+2)^n: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
-
T := proc(n,k) binomial(n,k)*(k+2)^n end;
-
Table[Binomial[n, k]*(k+2)^n, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 09 2019 *)
-
{T(n, k) = binomial(n,k)*(k+2)^n}; \\ G. C. Greubel, May 09 2019
-
[[binomial(n,k)*(k+2)^n for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
Original entry on oeis.org
1, 60, 2240, 67200, 1779456, 43545600, 1010606080, 22600089600, 492077121536, 10505429975040, 221005133905920, 4597756408627200, 94837435443183616, 1943344895628410880, 39618196941842677760
Offset: 0
A075910
Seventh column of triangle A075499.
Original entry on oeis.org
1, 112, 7392, 376320, 16380672, 642453504, 23410376704, 808210923520, 26787271999488, 860325833342976, 26956901684084736, 828217683974553600, 25047119070415028224, 747831252926309859328, 22095179333791056396288
Offset: 0
-
CoefficientList[Series[1/Product[1-4k x,{k,7}],{x,0,20}],x] (* Harvey P. Dale, Aug 11 2021 *)
Original entry on oeis.org
1, 60, 2340, 75600, 2204496, 60419520, 1591202880, 40800672000, 1027086863616, 25522067450880, 628349082117120, 15366613964083200, 373968813041012736, 9068526888588656640, 219326169845571010560
Offset: 0
Original entry on oeis.org
1, 90, 5040, 226800, 9008496, 330674400, 11511434880, 386143718400, 12611398415616, 403864019919360, 12744269679697920, 397694704355020800, 12304809943691636736, 378212825199337758720, 11565710925825703772160
Offset: 0
Original entry on oeis.org
1, 126, 9576, 571536, 29583792, 1395690912, 61756307712, 2609370796032, 106548747072768, 4239618914539008, 165370550603102208, 6351034526066700288, 240942052882092847104, 9052126728954680254464
Offset: 0
A075920
Seventh column of triangle A075501.
Original entry on oeis.org
1, 168, 16632, 1270080, 82927152, 4878631296, 266658822144, 13809041326080, 686528482768128, 33073815190800384, 1554470788616718336, 71638807647968870400, 3249771974096785403904, 145542549641019667218432
Offset: 0
Original entry on oeis.org
1, 21, 343, 5145, 74431, 1058841, 14941423, 210003465, 2945813311, 41281739961, 578226834703, 8097153012585, 113373983463391, 1587332657497881, 22223335428043183, 311131443554114505
Offset: 0
-
Table[-7^n+2 14^n,{n,0,20}] (* or *) LinearRecurrence[{21,-98}, {1,21},20] (* Harvey P. Dale, Apr 30 2011 *)
Original entry on oeis.org
1, 42, 1225, 30870, 722701, 16235562, 355888225, 7683656190, 164302593301, 3491636199282, 73902587019625, 1560051480424710, 32874455072382301, 691950889177526202, 14553192008156093425, 305928163614832076430
Offset: 0
Comments