cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 55 results. Next

A076012 Sixth column of triangle A075504.

Original entry on oeis.org

1, 189, 21546, 1928934, 149767947, 10598527863, 703442942532, 44583546335328, 2730727849782933, 162985193544670497, 9536099260315021758, 549348981049383669882, 31261349005300855653759
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..5} (A075513(6,m)*exp(9*(m+1)*x))/5!.

Crossrefs

Programs

Formula

a(n) = A075504(n+6, 6) = (9^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..5} (A075513(6, m)*((m+1)*9)^n)/5!.
G.f.: 1/Product_{k=1..6} (1 - 9*k*x).
E.g.f.: (d^6/dx^6)(((exp(9*x)-1)/9)^6)/6! = (-exp(9*x) + 160*exp(18*x) - 2430*exp(27*x) + 10240*exp(36*x) - 15625*exp(45*x) + 7776*exp(54*x))/5!.

A154715 Triangle interpolating between the subsets of an n-set (A000079) and the trees on n labeled nodes (A000272) (read by rows).

Original entry on oeis.org

1, 2, 3, 4, 18, 16, 8, 81, 192, 125, 16, 324, 1536, 2500, 1296, 32, 1215, 10240, 31250, 38880, 16807, 64, 4374, 61440, 312500, 699840, 705894, 262144, 128, 15309, 344064, 2734375, 9797760, 17294403, 14680064, 4782969
Offset: 0

Views

Author

Peter Luschny, Jan 14 2009

Keywords

Comments

Formatted as a square array:
1st row is A000079(n). Subsets of an n-set.
2nd row is A036290(n+1). Special (n+1)-subsets of a 3n-set partitioned into 3-blocks.
2nd column is A066274(n+1). Endofunctions of [n] such that 1 is not a fixed point.
1st column is A000272(n+2). Trees on n labeled nodes (Cayley's formula).
Alternating sum of rows in the triangle, Sum_{k=0..n} (-1)^(n-k) * T(n,k) = n! = A000142(n).
This triangle gives the coefficient of Sidi's polynomials D_{n,2,n}(-z)/(-z), for n >= 0. See [Sidi 1980]. - Wolfdieter Lang, Oct 27 2022

Examples

			Triangle begins as:
   1;
   2,    3;
   4,   18,    16;
   8,   81,   192,    125;
  16,  324,  1536,   2500,   1296;
  32, 1215, 10240,  31250,  38880,  16807;
  64, 4374, 61440, 312500, 699840, 705894, 262144;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*(k+2)^n ))); # G. C. Greubel, May 09 2019
  • Magma
    [[Binomial(n,k)*(k+2)^n: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 09 2019
    
  • Maple
    T := proc(n,k) binomial(n,k)*(k+2)^n end;
  • Mathematica
    Table[Binomial[n, k]*(k+2)^n, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 09 2019 *)
  • PARI
    {T(n, k) = binomial(n,k)*(k+2)^n}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[binomial(n,k)*(k+2)^n for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 09 2019
    

Formula

T(n,k) = binomial(n,k)*(k+2)^n, where n >= 0, and k >= 0.
From Wolfdieter Lang, Oct 20 2022: (Start)
O.g.f. of column k: (-x)^k*(k + 2)^k/(1 - (k + 2)*x)^(k+1), for k >= 0. See |A075513| with offset 0.
E.g.f. of column k: exp((k+2)*x)*((k+2)*x)^k/k!, for k >= 0. (End)
E.g.f. of triangle (of row polynomials in y): exp(2*x)*substitute(z = x*y*exp(x), LambertW(-z)^2/(-z)*2*(1 + LambertW(-z)))). - Wolfdieter Lang, Oct 24 2022

A075908 Fifth column of triangle A075499.

Original entry on oeis.org

1, 60, 2240, 67200, 1779456, 43545600, 1010606080, 22600089600, 492077121536, 10505429975040, 221005133905920, 4597756408627200, 94837435443183616, 1943344895628410880, 39618196941842677760
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..4} A075513(5,m)*exp(4*(m+1)*x)/4!.

Crossrefs

Formula

a(n) = A075499(n+5, 5) = (4^n)*S2(n+5, 5) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..4} A075513(5, m)*((m+1)*4)^n/4!.
G.f.: 1/Product_{k=1..5} (1 - 4*k*x).
E.g.f.: (d^5/dx^5)(((exp(4*x)-1)/4)^5)/5! = (exp(4*x) - 64*exp(8*x) + 486*exp(12*x) - 1024*exp(16*x) + 625*exp(20*x))/4!.

A075910 Seventh column of triangle A075499.

Original entry on oeis.org

1, 112, 7392, 376320, 16380672, 642453504, 23410376704, 808210923520, 26787271999488, 860325833342976, 26956901684084736, 828217683974553600, 25047119070415028224, 747831252926309859328, 22095179333791056396288
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..6} A075513(7,m)*exp(4*(m+1)*x)/6!.

Crossrefs

Cf. A075509.

Programs

  • Mathematica
    CoefficientList[Series[1/Product[1-4k x,{k,7}],{x,0,20}],x] (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n) = A075499(n+7, 7) = (4^n)*S2(n+7, 7) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..6} A075513(7, m)*((m+1)*4)^n/6!.
G.f.: 1/Product_{k=1..7} (1 - 4*k*x).
E.g.f.: (d^7/dx^7)(((exp(4*x)-1)/4)^7)/7! = (exp(4*x) - 384*exp(8*x) + 10935*exp(12*x) - 81920*exp(16*x) + 234375*exp(20*x) - 279936*exp(24*x) + 117649*exp(28*x))/6!.

A075917 Fourth column of triangle A075501.

Original entry on oeis.org

1, 60, 2340, 75600, 2204496, 60419520, 1591202880, 40800672000, 1027086863616, 25522067450880, 628349082117120, 15366613964083200, 373968813041012736, 9068526888588656640, 219326169845571010560
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..3} A075513(4,m)*exp(6*(m+1)*x)/3!.

Crossrefs

Formula

a(n) = A075501(n+4, 4) = (6^n)*S2(n+4, 4) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..3} A075513(4, m)*((m+1)*6)^n/3!.
G.f.: 1/Product_{k=1..4} (1 - 6*k*x).
E.g.f.: (d^4/dx^4)(((exp(6*x)-1)/6)^4)/4! = (-exp(6*x) + 24*exp(12*x) - 81*exp(18*x) + 64*exp(24*x))/3!.

A075918 Fifth column of triangle A075501.

Original entry on oeis.org

1, 90, 5040, 226800, 9008496, 330674400, 11511434880, 386143718400, 12611398415616, 403864019919360, 12744269679697920, 397694704355020800, 12304809943691636736, 378212825199337758720, 11565710925825703772160
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..4} A075513(5,m)*exp(6*(m+1)*x)/4!.

Crossrefs

Formula

a(n) = A075501(n+5, 5) = (6^n)*S2(n+5, 5) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..4} A075513(5, m)*((m+1)*6)^n/4!.
G.f.: 1/Product_{k=1..5} (1 - 6*k*x).
E.g.f.: (d^5/dx^5)(((exp(6*x)-1)/6)^5)/5! = (exp(6*x) - 64*exp(12*x) + 486*exp(18*x) - 1024*exp(24*x) + 625*exp(30*x))/4!.

A075919 Sixth column of triangle A075501.

Original entry on oeis.org

1, 126, 9576, 571536, 29583792, 1395690912, 61756307712, 2609370796032, 106548747072768, 4239618914539008, 165370550603102208, 6351034526066700288, 240942052882092847104, 9052126728954680254464
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..5} A075513(6,m)*exp(6*(m+1)*x)/5!.

Crossrefs

Formula

a(n) = A075501(n+6, 6) = (6^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..5} A075513(6, m)*((m+1)*6)^n/5!.
G.f.: 1/Product_{k=1..6} (1 - 6*k*x).
E.g.f.: (d^6/dx^6)(((exp(6*x)-1)/6)^6)/6! = (-exp(6*x) + 160*exp(12*x) - 2430*exp(18*x) + 10240*exp(24*x) - 15625*exp(30*x) + 7776*exp(36*x))/5!.

A075920 Seventh column of triangle A075501.

Original entry on oeis.org

1, 168, 16632, 1270080, 82927152, 4878631296, 266658822144, 13809041326080, 686528482768128, 33073815190800384, 1554470788616718336, 71638807647968870400, 3249771974096785403904, 145542549641019667218432
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..6} A075513(7,m)exp(6*(m+1)*x)/6!.

Crossrefs

Cf. A075919.

Formula

a(n) = A075501(n+7, 7) = (6^n)S2(n+7, 7) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = Sum_{m=0..6} A075513(7, m)*((m+1)*6)^n/6!.
G.f.: 1/Product_{k=1..7} (1 - 6*k*x).
E.g.f.: (d^7/dx^7)(((exp(6*x)-1)/6)^7)/7! = (exp(6*x) - 384*exp(12*x) + 10935*exp(18*x) - 81920*exp(24*x) + 234375*exp(30x) - 279936*exp(36*x) + 117649*exp(42*x))/6!.

A075921 Second column of triangle A075502.

Original entry on oeis.org

1, 21, 343, 5145, 74431, 1058841, 14941423, 210003465, 2945813311, 41281739961, 578226834703, 8097153012585, 113373983463391, 1587332657497881, 22223335428043183, 311131443554114505
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..1} A075513(2,m)*exp(7*(m+1)*x).

Crossrefs

Cf. A000420 (first column), A075922.

Programs

  • Mathematica
    Table[-7^n+2 14^n,{n,0,20}] (* or *) LinearRecurrence[{21,-98}, {1,21},20] (* Harvey P. Dale, Apr 30 2011 *)

Formula

a(n) = A075502(n+2, 2) = (7^n)*S2(n+2, 2) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = -7^n + 2*14^n.
G.f.: 1/((1-7*x)*(1-14*x)).
E.g.f.: (d^2/dx^2)(((exp(7*x)-1)/7)^2)/2! = -exp(7*x) + 2*exp(14*x).
a(0)=1, a(1)=21, a(n) = 21a(n-1) - 98a(n-2). - Harvey P. Dale, Apr 30 2011

A075922 Third column of triangle A075502.

Original entry on oeis.org

1, 42, 1225, 30870, 722701, 16235562, 355888225, 7683656190, 164302593301, 3491636199282, 73902587019625, 1560051480424710, 32874455072382301, 691950889177526202, 14553192008156093425, 305928163614832076430
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

The e.g.f. given below is Sum_{m=0..2} A075513(3,m)*exp(7*(m+1)*x)/2!.

Crossrefs

Formula

a(n) = A075502(n+3, 3) = (7^n)*S2(n+3, 3) with S2(n, m) := A008277(n, m) (Stirling2).
a(n) = (7^n - 8*14^n + 9*21^n)/2.
G.f.: 1/Product_{k=1..3} (1 - 7*k*x).
E.g.f.: (d^3/dx^3)(((exp(7*x)-1)/7)^3)/3! = (exp(7*x) - 8*exp(14*x) + 9*exp(21*x))/2!.
Previous Showing 41-50 of 55 results. Next