cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A377057 Numbers k such that there is at least one prime-power between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

2, 4, 6, 9, 11, 15, 18, 22, 30, 31, 39, 53, 54, 61, 68, 72, 97, 99, 114, 129, 146, 162, 172, 217, 219, 263, 283, 309, 327, 329, 357, 409, 445, 487, 519, 564, 609, 656, 675, 705, 811, 847, 882, 886, 1000, 1028, 1163, 1252, 1294, 1381, 1423, 1457
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053607.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of positive terms in A080101, or terms >1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For exactly two prime-powers we have A377288, primes A053706.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]>=1&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377057_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if any(len(factorint(i))<=1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377057_list = list(islice(A377057_gen(),52)) # Chai Wah Wu, Oct 27 2024

Formula

prime(a(n)) = A053607(n).

A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 6, 1, -1, -2, -3, 7, 1, 0, 1, 3, 6, 10, 3, 2, 2, 1, -2, -8, 11, 1, -2, -4, -6, -7, -5, 3, 13, 2, 1, 3, 7, 13, 20, 25, 22, 14, 1, -1, -2, -5, -12, -25, -45, -70, -92, 15, 1, 0, 1, 3, 8, 20, 45, 90, 160, 252, 17, 2, 1, 1, 0, -3, -11, -31, -76, -166, -326, -578
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

Row n is the k-th differences of A005117 = the squarefree numbers.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   1     2     3     5     6     7    10    11    13
  k=1:   1     1     2     1     1     3     1     2     1
  k=2:   0     1    -1     0     2    -2     1    -1     0
  k=3:   1    -2     1     2    -4     3    -2     1     1
  k=4:  -3     3     1    -6     7    -5     3     0    -2
  k=5:   6    -2    -7    13   -12     8    -3    -2     3
  k=6:  -8    -5    20   -25    20   -11     1     5    -5
  k=7:   3    25   -45    45   -31    12     4   -10    10
  k=8:  22   -70    90   -76    43    -8   -14    20   -19
  k=9: -92   160  -166   119   -51    -6    34   -39    28
Triangle form:
   1
   2   1
   3   1   0
   5   2   1   1
   6   1  -1  -2  -3
   7   1   0   1   3   6
  10   3   2   2   1  -2  -8
  11   1  -2  -4  -6  -7  -5   3
  13   2   1   3   7  13  20  25  22
  14   1  -1  -2  -5 -12 -25 -45 -70 -92
  15   1   0   1   3   8  20  45  90 160 252
		

Crossrefs

Row k=0 is A005117.
Row k=1 is A076259.
Row k=2 is A376590.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377039, absolute version A377040.
Column n = 1 is A377041, for primes A007442 or A030016.
First position of 0 in each row is A377042.
For nonsquarefree instead of squarefree numbers we have A377046.
For prime-powers instead of squarefree numbers we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A005117(i+k).

A377430 Numbers k such that there is exactly one squarefree number between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

3, 4, 9, 10, 13, 14, 15, 22, 26, 33, 39, 48, 59, 60, 65, 85, 88, 89, 93, 104, 113, 116, 122, 142, 143, 147, 148, 155, 181, 188, 198, 201, 209, 212, 213, 224, 226, 234, 235, 244, 254, 264, 265, 268, 287, 288, 313, 320, 328, 332, 333, 341, 343, 353, 361, 366
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2024

Keywords

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains only squarefree 10, so 4 is in the sequence.
		

Crossrefs

For composite instead of squarefree we have A029707.
These are the positions of 1 in A061398, or 2 in A373198.
For no squarefree numbers we have A068360.
For prime-power instead of squarefree we have A377287.
For at least one squarefree number we have A377431.
For perfect-power instead of squarefree we have A377434.
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composites, complement A008578.
A005117 lists the squarefree numbers, complement A013929.
A377038 gives k-differences of squarefree numbers.

Programs

  • Maple
    R:= NULL: count:= 0: q:= 2:
    for k from 1 while count < 100 do
      p:= q; q:= nextprime(q);
      if nops(select(numtheory:-issqrfree,[$p+1 .. q-1]))=1 then
        R:= R,k; count:= count+1;
     fi
    od:
    R; # Robert Israel, Nov 29 2024
  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],SquareFreeQ]]==1&]
  • PARI
    is(n,p=prime(n))=my(q=nextprime(p+1),s); for(k=p+1,q-1, if(issquarefree(k) && s++>1, return(0))); s==1 \\ Charles R Greathouse IV, Nov 29 2024

A377033 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the composite numbers (A002808).

Original entry on oeis.org

4, 6, 2, 8, 2, 0, 9, 1, -1, -1, 10, 1, 0, 1, 2, 12, 2, 1, 1, 0, -2, 14, 2, 0, -1, -2, -2, 0, 15, 1, -1, -1, 0, 2, 4, 4, 16, 1, 0, 1, 2, 2, 0, -4, -8, 18, 2, 1, 1, 0, -2, -4, -4, 0, 8, 20, 2, 0, -1, -2, -2, 0, 4, 8, 8, 0, 21, 1, -1, -1, 0, 2, 4, 4, 0, -8, -16, -16
Offset: 0

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Comments

Row n is the k-th differences of A002808 = the composite numbers.

Examples

			Array begins:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   4     6     8     9    10    12    14    15    16
  k=1:   2     2     1     1     2     2     1     1     2
  k=2:   0    -1     0     1     0    -1     0     1     0
  k=3:  -1     1     1    -1    -1     1     1    -1    -1
  k=4:   2     0    -2     0     2     0    -2     0     2
  k=5:  -2    -2     2     2    -2    -2     2     2    -2
  k=6:   0     4     0    -4     0     4     0    -4    -1
  k=7:   4    -4    -4     4     4    -4    -4     3    10
  k=8:  -8     0     8     0    -8     0     7     7   -29
  k=9:   8     8    -8    -8     8     7     0   -36    63
Triangle begins:
    4
    6    2
    8    2    0
    9    1   -1   -1
   10    1    0    1    2
   12    2    1    1    0   -2
   14    2    0   -1   -2   -2    0
   15    1   -1   -1    0    2    4    4
   16    1    0    1    2    2    0   -4   -8
   18    2    1    1    0   -2   -4   -4    0    8
   20    2    0   -1   -2   -2    0    4    8    8    0
   21    1   -1   -1    0    2    4    4    0   -8  -16  -16
		

Crossrefs

Initial rows: A002808, A073783, A073445.
The version for primes is A095195 or A376682.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377034, absolute version A377035.
Column n = 1 is A377036, for primes A007442 or A030016.
First position of 0 in each row is A377037.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, differences A075526.
Cf. A065310, A065890, A084758, A173390, A350004, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,PrimeQ]&,4,2*nn],k],nn],{k,0,nn}]

Formula

A(i,j) = Sum_{k=0..j} (-1)^(j-k) binomial(j,k) A002808(i+k).

A377049 First term of the n-th differences of the nonsquarefree numbers. Inverse zero-based binomial transform of A013929.

Original entry on oeis.org

4, 4, -3, 5, -6, 4, 3, -15, 25, -10, -84, 369, -1067, 2610, -5824, 12246, -24622, 47577, -88233, 155962, -259086, 393455, -512281, 456609, 191219, -2396571, 8213890, -21761143, 50923029, -110269263, 225991429, -444168664, 844390152, -1561482492, 2817844569
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree instead of nonsquarefree numbers we have A377041.
For antidiagonal-sums we have A377047, absolute A377048.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    Table[First[Differences[NestList[NestWhile[#+1&, #+1,SquareFreeQ[#]&]&,4,2*nn],k]],{k,0,nn}]
    With[{nsf=Select[Range[1000],!SquareFreeQ[#]&]},Table[Differences[nsf,n],{n,0,40}]][[;;,1]] (* Harvey P. Dale, Nov 28 2024 *)

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A377286 Numbers k such that there are no prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is not in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of 0 in A080101, or 1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For at least one prime-power we have A377057.
For one instead of no prime-powers we have A377287.
For two instead of no prime-powers we have A377288.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==0&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377286_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if all(len(factorint(i))>1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377286_list = list(islice(A377286_gen(),66)) # Chai Wah Wu, Oct 27 2024

A377431 Numbers k such that there is at least one squarefree number between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 44, 46, 47, 48, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2024

Keywords

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains 10, which is squarefree, so 4 is in the sequence.
		

Crossrefs

These are the positive positions in A061398, or terms >= 2 in A373198.
The complement (no squarefree numbers) is A068360.
For prime-power instead of squarefree we have A377057, strict version A377287.
For exactly one squarefree number we have A377430.
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composites, complement A008578.
A005117 lists the squarefree numbers, complement A013929.
A377038 gives k-differences of squarefree numbers.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],SquareFreeQ]]>=1&]

A376682 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the noncomposite numbers (A008578).

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 7, 2, 0, -1, -2, 11, 4, 2, 2, 3, 5, 13, 2, -2, -4, -6, -9, -14, 17, 4, 2, 4, 8, 14, 23, 37, 19, 2, -2, -4, -8, -16, -30, -53, -90, 23, 4, 2, 4, 8, 16, 32, 62, 115, 205, 29, 6, 2, 0, -4, -12, -28, -60, -122, -237, -442, 31, 2, -4, -6, -6, -2, 10, 38, 98, 220, 457, 899
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Comments

Row k is the k-th differences of the noncomposite numbers.

Examples

			Array begins:
         n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  -----------------------------------------------------------
  k=0:    1     2     3     5     7    11    13    17    19
  k=1:    1     1     2     2     4     2     4     2     4
  k=2:    0     1     0     2    -2     2    -2     2     2
  k=3:    1    -1     2    -4     4    -4     4     0    -6
  k=4:   -2     3    -6     8    -8     8    -4    -6    14
  k=5:    5    -9    14   -16    16   -12    -2    20   -28
  k=6:  -14    23   -30    32   -28    10    22   -48    48
  k=7:   37   -53    62   -60    38    12   -70    96   -70
  k=8:  -90   115  -122    98   -26   -82   166  -166    86
  k=9:  205  -237   220  -124   -56   248  -332   252   -86
Triangle begins:
    1
    2    1
    3    1    0
    5    2    1    1
    7    2    0   -1   -2
   11    4    2    2    3    5
   13    2   -2   -4   -6   -9  -14
   17    4    2    4    8   14   23   37
   19    2   -2   -4   -8  -16  -30  -53  -90
   23    4    2    4    8   16   32   62  115  205
   29    6    2    0   -4  -12  -28  -60 -122 -237 -442
   31    2   -4   -6   -6   -2   10   38   98  220  457  899
		

Crossrefs

The version for modern primes (A000040) is A095195.
Initial rows: A008578, A075526, A036263 with 0 prepended.
Column n = 1 is A030016 (modern A007442).
A version for partitions is A175804, cf. A053445, A281425, A320590.
Antidiagonal-sums are A376683 (modern A140119), absolute A376684 (modern A376681).
First position of 0 is A376855 (modern A376678).
For composite instead of prime we have A377033.
For squarefree instead of prime we have A377038, nonsquarefree A377046.
For prime-power instead of composite we have A377051.
A000040 lists the primes, differences A001223, second A036263.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    (* or *)
    nn=12;
    q=Table[If[n==0,1,Prime[n]],{n,0,2nn}];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,nn},{i,nn}]

Formula

A(i,j) = Sum_{k=0..j} (-1)^(j-k) binomial(j,k) A008578(i+k).

A376683 Antidiagonal-sums of the array A376682(n,k) = n-th term of the k-th differences of the noncomposite numbers (A008578).

Original entry on oeis.org

1, 3, 4, 9, 6, 27, -20, 109, -182, 471, -868, 1737, -2872, 4345, -4700, 1133, 14060, -55275, 150462, -346093, 717040, -1369351, 2432872, -4002905, 5964846, -7524917, 6123130, 4900199, -40900410, 134309057, -348584552, 798958881, -1678213106, 3277459119
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The fourth anti-diagonal of A376682 is: (7, 2, 0, -1, -2), so a(4) = 6.
		

Crossrefs

The modern version (for A000040 instead of A008578) is A140119.
The absolute version is A376681.
Antidiagonal-sums of A376682 (modern version A095195).
For composite instead of noncomposite we have A377033.
For squarefree instead of noncomposite we have A377038, nonsquarefree A377046.
A000040 lists the modern primes, differences A001223, second A036263.
A008578 lists the noncomposites, first differences A075526.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377034 Antidiagonal-sums of the array A377033(n,k) = n-th term of the k-th differences of the composite numbers (A002808).

Original entry on oeis.org

4, 8, 10, 8, 14, 14, 11, 24, 10, 20, 37, -10, 56, 26, -52, 260, -659, 2393, -8128, 25703, -72318, 184486, -430901, 933125, -1888651, 3597261, -6479654, 11086964, -18096083, 28307672, -42644743, 62031050, -86466235, 110902085, -110907437, 52379, 483682985
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2024

Keywords

Comments

Row-sums of the triangle version of A377033.

Examples

			The fourth antidiagonal of A377033 is (9, 1, -1, -1), so a(4) = 8.
		

Crossrefs

The version for prime instead of composite is A140119, noncomposite A376683.
This is the antidiagonal-sums of the array A377033, absolute version A377035.
For squarefree instead of composite we have A377039, absolute version A377040.
For nonsquarefree instead of composite we have A377047, absolute version A377048.
For prime-power instead of composite we have A377052, absolute version A377053.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, second A036263.
A002808 lists the composite numbers, differences A073783, second A073445.
A008578 lists the noncomposites, differences A075526.
Cf. A018252, A065310, A065890, A333254, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680, A377036.

Programs

  • Mathematica
    q=Select[Range[100],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}];
    Total/@Table[t[[j,i-j+1]],{i,Length[q]/2},{j,i}]
Previous Showing 11-20 of 46 results. Next