A376312
Run-compression of first differences (A078147) of nonsquarefree numbers (A013929).
Original entry on oeis.org
4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 4, 1, 3, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 2, 1, 3, 4, 2, 4, 1, 2, 1, 3, 1, 4, 1, 3, 4, 2, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 3, 2, 4, 1, 3, 4, 2, 3, 1, 3, 1, 4, 1, 3, 2, 1, 3, 4, 2
Offset: 1
The sequence of nonsquarefree numbers (A013929) is:
4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
(4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
and run-compression (A376312):
4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, ...
For nonprime instead of squarefree numbers we have
A037201, halved
A373947.
For run-sums instead of compression we have
A376264.
For squarefree instead of nonsquarefree we have
A376305, ones
A376342.
For prime-powers instead of nonsquarefree numbers we have
A376308.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A072284,
A112925,
A120992,
A274174,
A373198,
A375707,
A376306,
A376307,
A376311.
A376340
Sorted positions of first appearances in A057820, the sequence of first differences of prime-powers.
Original entry on oeis.org
1, 4, 9, 12, 18, 24, 34, 47, 60, 79, 117, 178, 198, 206, 215, 244, 311, 402, 465, 614, 782, 1078, 1109, 1234, 1890, 1939, 1961, 2256, 2290, 3149, 3377, 3460, 3502, 3722, 3871, 4604, 4694, 6634, 8073, 8131, 8793, 12370, 12661, 14482, 14990, 15912, 17140, 19166
Offset: 1
The terms together with their prime indices begin:
1: {}
4: {1,1}
9: {2,2}
12: {1,1,2}
18: {1,2,2}
24: {1,1,1,2}
34: {1,7}
47: {15}
60: {1,1,2,3}
79: {22}
117: {2,2,6}
178: {1,24}
198: {1,2,2,5}
206: {1,27}
215: {3,14}
244: {1,1,18}
For compression instead of sorted firsts we have
A376308.
For run-lengths instead of sorted firsts we have
A376309.
For run-sums instead of sorted firsts we have
A376310.
The version for squarefree numbers is the unsorted version of
A376311.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A001597,
A006549,
A007916,
A025475,
A037201,
A053289,
A078147,
A110969,
A120430,
A174965,
A373948,
A375706.
-
q=Differences[Select[Range[100],PrimePowerQ]];
Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]
A379308
Number of integer partitions of n with a unique squarefree part.
Original entry on oeis.org
0, 1, 1, 1, 0, 2, 2, 2, 0, 3, 5, 5, 1, 6, 9, 9, 2, 10, 14, 18, 6, 18, 24, 30, 11, 28, 39, 47, 24, 48, 63, 76, 41, 74, 95, 118, 65, 120, 149, 181, 107, 181, 221, 266, 169, 266, 335, 398, 262, 394, 487, 578, 391, 578, 697, 844, 592, 834, 997, 1198, 867
Offset: 0
The a(1) = 1 through a(11) = 5 partitions:
(1) (2) (3) . (5) (6) (7) . (5,4) (10) (11)
(4,1) (4,2) (4,3) (8,1) (6,4) (7,4)
(4,4,1) (8,2) (8,3)
(9,1) (9,2)
(4,4,2) (4,4,3)
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.
Cf.
A000586,
A000607,
A002095,
A013928,
A023895,
A034891,
A072284,
A073247,
A120327,
A175804,
A376657,
A377430.
-
Table[Length[Select[IntegerPartitions[n],Count[#,_?SquareFreeQ]==1&]],{n,0,30}]
A379309
Number of strict integer partitions of n with a unique squarefree part.
Original entry on oeis.org
0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 4, 4, 1, 4, 7, 7, 2, 6, 8, 11, 4, 9, 13, 17, 7, 13, 20, 22, 13, 20, 29, 33, 21, 29, 40, 47, 27, 41, 56, 64, 42, 59, 77, 85, 60, 74, 104, 115, 83, 101, 141, 155, 113, 138, 179, 206, 156, 183, 236, 272, 212, 239, 309, 343, 282, 315
Offset: 0
The a(9) = 2 through a(15) = 7 partitions:
(5,4) (10) (11) (9,3) (13) (14) (15)
(8,1) (6,4) (7,4) (8,5) (8,6) (8,7)
(8,2) (8,3) (12,1) (9,5) (9,6)
(9,1) (9,2) (8,4,1) (10,4) (11,4)
(12,2) (12,3)
(8,4,2) (8,4,3)
(9,4,1) (9,4,2)
A377038 gives k-th differences of squarefree numbers.
A379310 counts nonsquarefree prime indices.
Cf.
A000586,
A000607,
A002095,
A023895,
A034891,
A036497,
A072284,
A073247,
A096258,
A204389,
A377430.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?SquareFreeQ]==1&]],{n,0,30}]
-
lista(nn) = my(r=1, s=0); for(k=1, nn, if(issquarefree(k), s+=x^k, r*=1+x^k)); concat(0, Vec(r*s+O(x^(1+nn)))); \\ Jinyuan Wang, Feb 21 2025
A373125
Difference between 2^n and the least squarefree number >= 2^n.
Original entry on oeis.org
0, 0, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0
Difference between 2^n and
A372683(n).
A053797 gives lengths of gaps between squarefree numbers.
A061398 counts squarefree numbers between primes (exclusive).
A077643 counts squarefree terms between powers of 2, run-lengths of
A372475.
A143658 counts squarefree numbers up to 2^n.
For primes between powers of 2:
- sum
A293697 (except initial terms)
-
Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&]-2^n,{n,0,100}]
A373412
Sum of the n-th maximal antirun of nonsquarefree numbers differing by more than one.
Original entry on oeis.org
12, 99, 52, 180, 93, 49, 335, 279, 156, 629, 99, 540, 237, 245, 125, 521, 567, 450, 963, 340, 347, 728, 1386, 1080, 1637, 243, 244, 1511, 1610, 555, 852, 1171, 2142, 960, 985, 1689, 343, 1042, 351, 1068, 724, 732, 1116, 1905, 1980, 2898, 424, 2161, 3150, 2339
Offset: 1
Row-sums of:
4 8
9 12 16 18 20 24
25 27
28 32 36 40 44
45 48
49
50 52 54 56 60 63
64 68 72 75
76 80
81 84 88 90 92 96 98
99
The partial sums are a subset of
A329472.
Cf.
A025157,
A049093,
A049094,
A061399,
A101836,
A112925,
A143658,
A294242,
A350842,
A372683,
A373197.
A376307
Run-sums of the sequence of first differences of squarefree numbers.
Original entry on oeis.org
2, 2, 2, 3, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 1, 4, 6, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 1, 4, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 6, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 6, 2, 2, 1, 3
Offset: 1
The sequence of squarefree numbers (A005117) is:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
(1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with sums A376307 (this sequence).
Run-sums of first differences of
A005117.
For the squarefree numbers themselves we have
A373413.
For prime instead of squarefree numbers we have
A373822, halved
A373823.
For run-lengths instead of run-sums we have
A376306.
For prime-powers instead of squarefree numbers we have
A376310.
For positions of first appearances instead of run-sums we have
A376311.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A061398,
A072284,
A112925,
A112926,
A120992,
A373197,
A373198,
A375707.
A376308
Run-compression of the sequence of first differences of prime-powers.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 2, 4, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 4, 2, 6, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 8, 5, 1, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 4, 2, 4, 6, 2, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1
The sequence of prime-powers (A246655) is:
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
The run-compression is A376308 (this sequence).
For squarefree numbers instead of prime-powers we have
A376305.
For run-lengths instead of compression we have
A376309.
For run-sums instead of compression we have
A376310.
A116861 counts partitions by compressed sum, by compressed length
A116608.
A373948 encodes compression using compositions in standard order.
Cf.
A001597,
A006549,
A007916,
A025475,
A034296,
A053289,
A076259,
A110969,
A120430,
A124767,
A174965,
A374251.
A377040
Antidiagonal-sums of absolute value of the array A377038(n,k) = n-th term of k-th differences of squarefree numbers (A005117).
Original entry on oeis.org
1, 3, 4, 9, 13, 18, 28, 39, 106, 267, 595, 1212, 2286, 4041, 6720, 10497, 15387, 20914, 25894, 29377, 37980, 70785, 175737, 343806, 579751, 861934, 1162080, 1431880, 1688435, 2589533, 8731932, 23911101, 58109574, 130912573, 276067892, 543833014, 992784443
Offset: 0
The fourth antidiagonal of A377038 is (6, 1, -1, -2, -3), so a(4) = 13.
These are the antidiagonal-sums of the absolute value of
A377038.
The non-absolute version is
A377039.
A073576 counts integer partitions into squarefree numbers, factorizations
A050320.
Cf.
A007674,
A053797,
A053806,
A061398,
A072284,
A075526,
A076259,
A120992,
A140119,
A376311,
A376590,
A376591,
A377046.
-
nn=20;
t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]
A379316
Positive integers whose prime indices include a unique squarefree number.
Original entry on oeis.org
2, 3, 5, 11, 13, 14, 17, 21, 29, 31, 35, 38, 41, 43, 46, 47, 57, 59, 67, 69, 73, 74, 77, 79, 83, 91, 95, 98, 101, 106, 109, 111, 113, 115, 119, 122, 127, 137, 139, 142, 147, 149, 157, 159, 163, 167, 178, 179, 181, 183, 185, 191, 194, 199, 203, 206, 209, 211
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
11: {5}
13: {6}
14: {1,4}
17: {7}
21: {2,4}
29: {10}
31: {11}
35: {3,4}
38: {1,8}
41: {13}
43: {14}
46: {1,9}
A008966 is the characteristic function for the squarefree numbers.
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==1&]
Comments