cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A078320 Sum of all prime factors of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 7, 6, 15, 37, 12, 17, 11, 101, 63, 73, 24, 197, 115, 14, 36, 109, 183, 70, 32, 102, 60, 34, 15, 677, 43, 134, 423, 70, 52, 18, 116, 102, 615, 38, 144, 39, 763, 401, 60, 358, 49, 39, 30, 102, 37, 34, 49, 170, 1303, 55, 288, 23, 108, 162, 30, 678, 1743, 1801
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078320 = a001414 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := Plus @@ Times @@@ FactorInteger[1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    rad(n)=my(f=factor(n)[,1]); prod(i=1,#f,f[i])
    a(n)=my(f=factor(n*rad(n)+1));sum(i=1,#f~,f[i,1]*f[i,2]) \\ Charles R Greathouse IV, Jul 15 2013
    

Formula

a(n) = A001414(A078310(n)).

A078322 a(n) = rad(n*rad(n)+1), where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 10, 3, 26, 37, 10, 17, 14, 101, 122, 73, 170, 197, 226, 33, 290, 109, 362, 201, 442, 485, 530, 145, 42, 677, 82, 393, 842, 901, 962, 65, 1090, 1157, 1226, 217, 1370, 85, 1522, 401, 58, 1765, 370, 969, 26, 2117, 2210, 17, 86, 501, 2602, 1353, 2810, 65
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

a(n) = A007947(A078310(n)).

Examples

			a(25) = rad(25*rad(25)+1) = rad(25*rad(5^2)+1) = rad(25*5+1) = rad(125+1) = rad(126) = rad(2*3*3*7) = 2*3*7 = 42.
		

Crossrefs

Programs

  • Haskell
    a078322 = a007947 . a078310
    -- Reinhard Zumkeller, Oct 19 2011
    
  • Maple
    rad:= n-> mul(i, i=numtheory[factorset](n)):
    a:= n-> rad(n*rad(n)+1):
    seq(a(n), n=1..70);  # Alois P. Heinz, May 04 2017
  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]]; Table[ rad[n*rad[n] + 1], {n, 1, 54}] (* Jean-François Alcover, Dec 03 2012 *)
  • PARI
    rad(n)=vecprod(factor(n)[,1])
    a(n)=rad(n*rad(n)+1) \\ Charles R Greathouse IV, Jul 09 2013

A078311 Smallest prime factor of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 2, 3, 2, 37, 2, 17, 2, 101, 2, 73, 2, 197, 2, 3, 2, 109, 2, 3, 2, 5, 2, 5, 2, 677, 2, 3, 2, 17, 2, 5, 2, 13, 2, 7, 2, 5, 2, 401, 2, 5, 2, 3, 2, 29, 2, 17, 2, 3, 2, 3, 2, 5, 2, 5, 2, 5, 2, 1801, 2, 5, 2, 3, 2, 4357, 2, 3, 2, 13, 2, 433, 2, 5477, 2, 3, 2, 5, 2, 3, 2, 5, 2, 3529, 2, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078311 = a020639 . a078310  -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    a[n_] := FactorInteger[1 + n * Times @@ FactorInteger[n][[;;, 1]]][[1, 1]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    a(n) = factor(1 + n * vecprod(factor(n)[, 1]))[1,1]; \\ Amiram Eldar, Apr 10 2025

Formula

a(n) = A020639(A078310(n)).

A078312 Greatest prime factor of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 5, 3, 13, 37, 5, 17, 7, 101, 61, 73, 17, 197, 113, 11, 29, 109, 181, 67, 17, 97, 53, 29, 7, 677, 41, 131, 421, 53, 37, 13, 109, 89, 613, 31, 137, 17, 761, 401, 29, 353, 37, 19, 13, 73, 17, 17, 43, 167, 1301, 41, 281, 13, 89, 157, 13, 673, 1741, 1801, 1861, 769
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078312 = a006530 . a078310  -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    a[n_] := FactorInteger[1 + n * Times @@ FactorInteger[n][[;;, 1]]][[-1, 1]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    a(n) = my(f = factor(1 + n * vecprod(factor(n)[, 1]))); f[#f~, 1]; \\ Amiram Eldar, Apr 10 2025

Formula

a(n) = A006530(A078310(n)).

A078316 Maximum exponent in the prime factorization of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078316 = a051903 . a078310  -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    a[n_] := Max[FactorInteger[1 + n * Times @@ FactorInteger[n][[;;, 1]]][[;;, 2]]]; Array[a, 100] (* Amiram Eldar, Sep 07 2024 *)
  • PARI
    a(n) = vecmax(factor(1 + n * vecprod(factorint(n)[, 1]))[, 2]); \\ Amiram Eldar, Sep 07 2024

Formula

a(n) = A051903(A078310(n)).

A078317 Number of divisors of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 2, 4, 3, 4, 2, 6, 2, 6, 2, 4, 2, 8, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 4, 12, 2, 4, 4, 4, 4, 8, 4, 8, 4, 4, 4, 8, 6, 4, 2, 6, 4, 12, 8, 9, 4, 16, 3, 8, 4, 4, 8, 8, 6, 8, 4, 16, 4, 4, 2, 4, 4, 6, 4, 4, 2, 8, 6, 4, 6, 4, 2, 16, 2, 4, 8, 8, 4, 4, 6, 6, 6, 16, 2, 4, 4, 8, 4, 8, 4, 8, 8, 12, 2, 4, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078317 = a000005 . a078310  -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    a[n_] := DivisorSigma[0, 1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    a(n) = numdiv(1 + n * vecprod(factor(n)[, 1])); \\ Amiram Eldar, Apr 10 2025

Formula

a(n) = A000005(A078310(n)).

A078326 Numbers n such that n-1 and n are a pair of consecutive powerful numbers.

Original entry on oeis.org

9, 289, 676, 9801, 12168, 235225, 332929, 465125, 1825201, 11309769, 384199201, 592192225, 4931691076, 5425069448, 13051463049, 221322261601, 443365544449, 865363202001, 8192480787001, 11968683934832, 13325427460801, 15061377048201, 28821995554248
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

a(n) = u*rad(u) = v*rad(v)+1 for appropriate u, v, where rad(n) = A007947(n) is the squarefree kernel.
Also numbers n such that n(n-1) is a powerful number. - Charles R Greathouse IV, Aug 08 2013

Crossrefs

Programs

Formula

a(n) = A060355(n)+1.

Extensions

a(22)-a(23) from Donovan Johnson, Jul 29 2011

A078321 Euler's totient of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

1, 4, 4, 6, 12, 36, 20, 16, 12, 100, 60, 72, 64, 196, 112, 20, 112, 108, 180, 132, 192, 384, 208, 112, 36, 676, 40, 260, 420, 832, 432, 48, 432, 1056, 612, 180, 544, 1088, 760, 400, 812, 1408, 720, 576, 312, 2016, 768, 272, 168, 332, 1300, 800, 1120, 240
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078321 = a000010 . a078310  -- Reinhard Zumkeller, Jul 23 2013
    
  • Mathematica
    a[n_] := EulerPhi[1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)
  • PARI
    a(n) = eulerphi(1 + n * vecprod(factor(n)[, 1])); \\ Amiram Eldar, Apr 10 2025

Formula

a(n) = A000010(A078310(n)).

A078323 Arithmetic derivative of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 7, 6, 15, 1, 45, 1, 32, 1, 63, 1, 129, 1, 115, 14, 213, 1, 183, 70, 281, 102, 381, 34, 165, 1, 43, 134, 423, 70, 581, 18, 773, 102, 615, 38, 969, 459, 763, 1, 957, 358, 1715, 431, 780, 102, 1847, 34, 524, 170, 1303, 607, 1977, 155, 1725, 162, 3825, 678, 1743
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078323 = a003415 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := ad[1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)

Formula

a(n) = A003415(A078310(n)).

A258565 Arithmetic derivative of powerful numbers, cf. A001694.

Original entry on oeis.org

0, 4, 12, 6, 32, 10, 27, 80, 60, 14, 192, 156, 108, 140, 216, 22, 75, 448, 384, 26, 252, 380, 540, 240, 405, 1024, 912, 34, 756, 147, 38, 700, 960, 1296, 420, 572, 800, 2304, 46, 2112, 500, 1836, 945, 780, 1458, 1792, 2320, 58, 3024, 1860, 62, 1628, 2592
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 03 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258565 = a003415 . a001694
  • Mathematica
    ader[n_] := Switch[n, 0|1, 0, _, If[PrimeQ[n], 1, Sum[Module[{p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
    ader /@ Join[{1}, Select[Range[1000], AllTrue[FactorInteger[#][[All, 2]], # > 1&]&]] (* Jean-François Alcover, Oct 12 2021 *)

Formula

a(n) = A003415(A001694(n)).
Previous Showing 11-20 of 20 results.