cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078310 a(n) = n*rad(n) + 1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

2, 5, 10, 9, 26, 37, 50, 17, 28, 101, 122, 73, 170, 197, 226, 33, 290, 109, 362, 201, 442, 485, 530, 145, 126, 677, 82, 393, 842, 901, 962, 65, 1090, 1157, 1226, 217, 1370, 1445, 1522, 401, 1682, 1765, 1850, 969, 676, 2117, 2210, 289, 344, 501, 2602, 1353
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

A112526(a(n) - 1) = 1, see also A224866. - Reinhard Zumkeller, Jul 23 2013
Increase each exponent in the prime factorization by one, then add 1 to the new product. - M. F. Hasler, Jan 22 2017

Crossrefs

Smallest, greatest factor: A078311, A078312, number of factors: A078313, A078314, min, max exponent: A078315, A078316, number, sum of divisors: A078317, A078318, sum of prime factors: A078319, A078320, Euler's totient: A078321, squarefree kernel: A078322, arithmetic derivative: A078323.
Cf. primes: A078324, squarefree: A078325, squareful: A078326.

Programs

  • Haskell
    a078310 n = n * a007947 n + 1
    -- Reinhard Zumkeller, Jul 23 2013, Oct 19 2011
    
  • Maple
    a:= n-> 1+n*mul(i[1], i=ifactors(n)[2]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 22 2017
  • Mathematica
    A078310[n_] := n*Times @@ FactorInteger[n][[All, 1]] + 1; Array[A078310, 50] (* G. C. Greubel, Apr 25 2017 *)
  • PARI
    rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
    a(n)=n*rad(n)+1 \\ Charles R Greathouse IV, Jul 09 2013
    
  • PARI
    a(n)={n=factor(n);n[,2]+=vectorv(matsize(n)[1],i,1);factorback(n)+1} \\ M. F. Hasler, Jan 22 2017
    
  • PARI
    a(n)=prod(k=1,matsize(n=factor(n))[1],n[k,1]^(n[k,2]+1))+1 \\ M. F. Hasler, Jan 22 2017

Formula

a(n) = A064549(n)+1.

A078323 Arithmetic derivative of n*rad(n)+1, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 7, 6, 15, 1, 45, 1, 32, 1, 63, 1, 129, 1, 115, 14, 213, 1, 183, 70, 281, 102, 381, 34, 165, 1, 43, 134, 423, 70, 581, 18, 773, 102, 615, 38, 969, 459, 763, 1, 957, 358, 1715, 431, 780, 102, 1847, 34, 524, 170, 1303, 607, 1977, 155, 1725, 162, 3825, 678, 1743
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078323 = a003415 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := ad[1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Apr 10 2025 *)

Formula

a(n) = A003415(A078310(n)).

A188525 a(n) = rad(rad(n)^2+1), where rad = A007947.

Original entry on oeis.org

2, 5, 10, 5, 26, 37, 10, 5, 10, 101, 122, 37, 170, 197, 226, 5, 290, 37, 362, 101, 442, 485, 530, 37, 26, 677, 10, 197, 842, 901, 962, 5, 1090, 1157, 1226, 37, 1370, 85, 1522, 101, 58, 1765, 370, 485, 226, 2117, 2210, 37, 10, 101, 2602, 677, 2810, 37
Offset: 1

Views

Author

Jonathan Vos Post, Apr 03 2011

Keywords

Examples

			a(7) = rad(rad(7)^2 + 1) = rad(7^2 + 1) = rad(50) = 10.
		

Crossrefs

Programs

  • Magma
    [ &*PrimeDivisors((&*PrimeDivisors(n))^2+1): n in [1..51] ]; // Bruno Berselli, Apr 04 2011
    
  • Maple
    with(numtheory):
    rad:= n-> mul(i, i=factorset(n)):
    a:= n-> rad(rad(n)^2+1):
    seq(a(n), n=1..70);  # Alois P. Heinz, Apr 03 2011
  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    a[n_] := rad[rad[n]^2 + 1];
    Array[a, 70] (* Jean-François Alcover, Mar 27 2017 *)
  • PARI
    rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
    a(n)=rad(rad(n)^2+1) \\ Charles R Greathouse IV, Aug 08 2013

Formula

a(n) = A007947(A078615(n)+1). - R. J. Mathar, Apr 04 2011
Showing 1-3 of 3 results.