cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A359131 Number of odd primes in the Collatz trajectory of A177000(n).

Original entry on oeis.org

0, 2, 1, 5, 4, 2, 3, 6, 5, 6, 2, 10, 8, 9, 7, 8, 6, 11, 9, 4, 7, 5, 8, 3, 9, 7, 4, 2, 3, 6, 9, 7, 10, 5, 8, 6, 11, 4, 2, 10, 3, 9, 10, 11, 12, 3, 6, 5, 11, 4, 10, 5, 3, 6, 7, 9, 7, 2, 7, 5, 8, 6, 4, 7, 5, 8, 3, 6, 9, 10, 5, 8, 3, 7, 8, 8, 13, 11, 11, 9, 12, 2
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2022, following a suggestion from Rudolfo Nieves

Keywords

Comments

Equivalently, a(n) = A055509(A177000(n)).

Crossrefs

Extensions

a(38) and beyond from Michael S. Branicky, Dec 30 2022

A362958 a(n) is the number of primes in a Collatz orbit started at A078373(n).

Original entry on oeis.org

1, 3, 6, 7, 25, 26, 28, 29, 30, 32, 36, 37, 43, 44, 48, 50, 51, 52, 53, 55, 59, 61, 62, 67, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 90, 92
Offset: 1

Views

Author

Hugo Pfoertner, May 19 2023

Keywords

Crossrefs

Formula

a(n) = A078350(A078373(n)).

A319227 a(n) is the number of twin primes in the Collatz trajectory of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 2, 0, 0, 1, 0, 1, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 0, 2, 1, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 2, 2, 1, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 1, 2, 0, 2, 1, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2
Offset: 1

Views

Author

Michel Lagneau, Sep 14 2018

Keywords

Comments

Conjecture: a(n) <=2.
For a(n) = 2, the corresponding twin primes are (5, 7) and (11, 13) or (11, 13) and (17, 19).
This sequence is generalizable: let a(n, p, p+2q) be the number of pairs of primes of form (p, p+2q) in the Collatz trajectory of n, q = 1, 2,... It is conjectured that a(n, p, p+2q) < =2. (see the table below).
+----------------+---------------------------------+
| pairs of prime | pairs of prime numbers |
| numbers | in the Collatz trajectory |
| | when a(n, p, p+2q) = 2 |
+----------------+---------------------------------+
| (p, p+2) | (5, 7) and (11, 13) |
| | or (11, 13) and (17, 19) |
+----------------+---------------------------------+
| (p, p+4) | (7, 11) and (13, 17) |
+----------------+---------------------------------+
| (p, p+6) | (41, 47) and (47, 53) |
| | or (47, 53) and (97, 103) |
| | or (47, 53) and (587, 593) |
+----------------+---------------------------------+
| (p, p+8) | (23, 31) and (53, 61) |
+----------------+---------------------------------+
| (p, p+10) | (61, 71) and (73, 83) |
| | or (61, 71) and (283, 293) |
| | or (61, 71) and (577, 587) |
+----------------+---------------------------------+
| (p, p+12) | (71, 83) and (251, 263) |
| | or (251, 263) and (467, 479) |
| | or (251, 263) and (479, 491) |
| | or (251, 263) and (1607, 1619) |
+----------------+---------------------------------+
| (p, p+14) | No results for n <= 10^6 |
+----------------+---------------------------------+
...................................................

Examples

			a(7) = 2 because the Collatz trajectory of 7 is 7 -> 22 -> 11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 with two twin primes: (5, 7) and (11, 13).
		

Crossrefs

Programs

  • Maple
    nn:=10^8:
    for n from 1 to 100 do:
       m:=n:lst:={}:
          for i from 1 to nn while(m<>1) do:
            if irem(m, 2)=0
             then
             m:=m/2:
             else
             lst:=lst union {m}:m:=3*m+1:
           fi:
         od:
         n0:=nops(lst):it:=0:
         for j from 1 to n0-1 do:
         if isprime(lst[j]) and isprime(lst[j+1]) and lst[j+1]=lst[j]+2
         then it:=it+1:else fi:
          od:
        printf(`%d, `,it):
        od:
Previous Showing 11-13 of 13 results.