cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-75 of 75 results.

A319299 Irregular triangle where T(n,k) is the number of integer partitions of n with GCD equal to the k-th divisor of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 1, 6, 1, 7, 2, 1, 1, 14, 1, 17, 3, 1, 1, 27, 2, 1, 34, 6, 1, 1, 55, 1, 63, 7, 3, 2, 1, 1, 100, 1, 119, 14, 1, 1, 167, 6, 2, 1, 209, 17, 3, 1, 1, 296, 1, 347, 27, 7, 2, 1, 1, 489, 1, 582, 34, 6, 3, 1, 1, 775, 14, 2, 1, 945, 55, 1, 1, 1254
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			Triangle begins:
    1
    1   1
    2   1
    3   1   1
    6   1
    7   2   1   1
   14   1
   17   3   1   1
   27   2   1
   34   6   1   1
   55   1
   63   7   3   2   1   1
  100   1
  119  14   1   1
  167   6   2   1
  209  17   3   1   1
  296   1
  347  27   7   2   1   1
  489   1
  582  34   6   3   1   1
		

Crossrefs

A regular version is A168532. Row lengths are A000005. Row sums are A000041. First column is A000837.

Programs

  • Maple
    # with table A000837 obtained from that sequence
    f:= proc(n) local D,d;
      D:= sort(convert(numtheory:-divisors(n),list),`>`);
      seq(A000837[d],d=D)
    end proc:
    map(f, [$1..60]); # Robert Israel, Jul 09 2020
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GCD@@#==k&]],{n,20},{k,Divisors[n]}]

Formula

T(n,k) = A000837(n/A027750(n,k)).

A319300 Irregular triangle where T(n,k) is the number of strict integer partitions of n with GCD equal to the k-th divisor of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 4, 1, 4, 1, 0, 1, 6, 1, 1, 7, 2, 0, 1, 11, 1, 10, 2, 1, 1, 0, 1, 17, 1, 17, 4, 0, 1, 23, 2, 1, 1, 26, 4, 1, 0, 1, 37, 1, 36, 6, 2, 1, 0, 1, 53, 1, 53, 7, 2, 1, 0, 1, 70, 4, 1, 1, 77, 11, 0, 1, 103, 1, 103, 10, 4, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			Triangle begins:
   1
   0  1
   1  1
   1  0  1
   2  1
   2  1  0  1
   4  1
   4  1  0  1
   6  1  1
   7  2  0  1
  11  1
  10  2  1  1  0  1
  17  1
  17  4  0  1
  23  2  1  1
  26  4  1  0  1
  37  1
  36  6  2  1  0  1
  53  1
  53  7  2  1  0  1
		

Crossrefs

A regular version is A303138. Row lengths are A000005. Row sums are A000009. First column is A078374.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,GCD@@#==k]&]],{n,20},{k,Divisors[n]}]

Formula

T(n,k) = A078374(n/A027750(n,k)).

A328678 Number of strict, pairwise indivisible, relatively prime integer partitions of n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 1, 2, 2, 4, 3, 5, 4, 5, 7, 10, 9, 12, 11, 14, 15, 22, 20, 25, 26, 32, 33, 44, 41, 54, 49, 62, 67, 80, 80, 100, 100, 118, 121, 152, 148, 179, 178, 210, 219, 267, 259, 316, 313, 363, 380, 449, 448, 529, 532, 619, 640, 745, 749, 867, 889
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2019

Keywords

Comments

Note that pairwise indivisibility implies strictness, but we include "strict" in the name in order to more clearly distinguish it from A328676 = "Number of relatively prime integer partitions of n whose distinct parts are pairwise indivisible".

Examples

			The a(1) = 1 through a(20) = 11 partitions (A..H = 10..20) (empty columns not shown):
  1  32  43  53  54  73   65  75   76  95   87   97   98    B7   A9    B9
         52      72  532  74  543  85  B3   B4   B5   A7    D5   B8    D7
                          83  732  94  743  D2   D3   B6    765  C7    H3
                          92       A3  752  654  754  C5    873  D6    875
                                   B2       753  853  D4    954  E5    965
                                                 952  E3    972  F4    974
                                                 B32  F2    B43  G3    A73
                                                      764   B52  H2    B54
                                                      A43   D32  865   B72
                                                      7532       964   D43
                                                                 B53   D52
                                                                 7543
		

Crossrefs

The Heinz numbers of these partitions are the squarefree terms of A328677.
The non-strict case is A328676.
Pairwise indivisible partitions are A303362.
Strict, relatively prime partitions are A078374.
A ranking function using binary indices is A328671.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]

Formula

Moebius transform of A303362.

A366750 Number of strict integer partitions of n into odd parts with a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 3, 1, 0, 2, 0, 1, 3, 1, 0, 3, 2, 1, 4, 1, 1, 5, 0, 1, 5, 1, 2, 5, 1, 1, 5, 2, 2, 6, 0, 1, 9, 1, 0, 9, 0, 3, 9, 1, 1, 9, 5, 1, 11, 1, 0, 15, 1, 2, 13, 1, 5, 14, 0, 1, 18
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Examples

			The a(n) partitions for n = 3, 24, 30, 42, 45, 57, 60:
  (3)  (15,9)  (21,9)  (33,9)   (45)       (57)       (51,9)
       (21,3)  (25,5)  (35,7)   (33,9,3)   (45,9,3)   (55,5)
               (27,3)  (39,3)   (21,15,9)  (27,21,9)  (57,3)
                       (27,15)  (25,15,5)  (33,15,9)  (33,27)
                                (27,15,3)  (33,21,3)  (35,25)
                                           (39,15,3)  (39,21)
                                                      (45,15)
                                                      (27,21,9,3)
                                                      (33,15,9,3)
		

Crossrefs

This is the case of A000700 with a common divisor.
Including evens gives A303280.
The complement is counted by A366844, non-strict version A366843.
The non-strict version is A366852, with evens A018783.
A000041 counts integer partitions, strict A000009 (also into odds).
A051424 counts pairwise coprime partitions, for odd parts A366853.
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A168532 counts partitions by gcd.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], And@@OddQ/@#&&UnsameQ@@#&&GCD@@#>1&]], {n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366750(n): return sum(1 for p in partitions(n) if all(d==1 for d in p.values()) and all(d&1 for d in p) and gcd(*p)>1) # Chai Wah Wu, Nov 02 2023

Extensions

More terms from Chai Wah Wu, Nov 02 2023

A302979 Powers of squarefree numbers whose prime indices are relatively prime. Heinz numbers of uniform partitions with relatively prime parts.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 15, 16, 22, 26, 30, 32, 33, 34, 35, 36, 38, 42, 46, 51, 55, 58, 62, 64, 66, 69, 70, 74, 77, 78, 82, 85, 86, 93, 94, 95, 100, 102, 105, 106, 110, 114, 118, 119, 122, 123, 128, 130, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The number of uniform partitions of n with relatively prime parts is A078374(n).

Examples

			Sequence of all uniform relatively prime integer partitions begins (1), (11), (21), (111), (31), (41), (32), (1111), (51), (61), (321), (11111), (52), (71), (43), (2211).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],And[GCD@@PrimePi/@FactorInteger[#][[All,1]]===1,SameQ@@FactorInteger[#][[All,2]]]&]
Previous Showing 71-75 of 75 results.