cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A091752 Generalized Stirling2 array (-1,2)S2. Irregular triangle a(n, m) for n >= 1 and 2 <= m <= 2*n.

Original entry on oeis.org

1, 2, -2, 1, 40, -40, 20, -6, 1, 2240, -2240, 1120, -360, 80, -12, 1, 246400, -246400, 123200, -40320, 9520, -1680, 220, -20, 1, 44844800, -44844800, 22422400, -7392000, 1786400, -332640, 48720, -5600, 490, -30, 1, 12197785600, -12197785600, 6098892800, -2018016000, 493292800
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

This a(n,m) array appears in the normal ordering formula ((1/x)*(d_x)^2)^n = Sum_{m=2..2*n} a(n,m)*x^(m-3*n)*(d_x)^m, n >= 1, with the derivative operator d_x := d/dx.
This is an extension of the generalized Stirling2 arrays S_{r,s}(n,k) (here k=m) considered for nonnegative r and s in the Blasiak et al. reference given in A078740. See also the Schork reference given there.
The sequence of row lengths for this array is [1,3,5,7,9,11,...] = A005408(n-1), n >= 1.
These generalized Stirling2 arrays have been treated in Carlitz's paper (with r = lambda + mu, s = mu), and a recurrence is given eq. (4). See the formula section for the present case mu = 2, lambda = -3, and Carlitz's a_{n,s-1} = a(n, s) (here s = m). - Wolfdieter Lang, Dec 16 2019
From Wolfdieter Lang and Werner Schulte, Jan 29 2020: (Start)
For the case of the (irregular) triangles (-1,s)S2, for s >= 1, W. Schulte conjectured that a(s; n, m) = T(s; (s+1)*n - m - 1, m - s), for n > = 1 and m = s, s+1, ..., s*n, with the row polynomials RT(s; n, x) = Sum_{m = 0..s*n} T(s; n, m)*x^m of the triangle T(s), n >= 0, defined by the Rodrigues-type formula exp(x^(s+1)/(s+1)) (d/dx)^n exp(-x^(s+1)/(s+1)) = (-1)^n*RT(s; n, x). Thus the rows of (-1,s)S2 are every (s+1)-th upwards antidiagonals of T(s), but with offset m = s instead of m = 0.
The proof of the conjecture follows by showing the Carlitz recurrence for (-1,s)S2, but with offset n = 0 and m = 0; that is, a(s; n+1, m+s) =: aHat(s; n, m) = Sum_{j = 0..s} binomial(s, j)*fallfac(s + m - j - (s+1)*n , s-j)*aHat(s; n-1, m-j), for n >= 0, m = 0, 1, ..., s*n, with aHat(s; 0, 0) = 1 and aHat(s; n, m) = 0 for m < 0 and m > s*n. The falling factorials are fallfac(x, n). With aHat(s; n, m) = T(s; (s+1)*n - m, m) this leads to a recurrence for T(s) which is equivalent to the recurrence for the row polynomials RT(s), namely RT(s; n, x) = Sum_{j=0 .. s} binomial(s, j)*x^j*fallfac(s - j - n, s - j)*RT(s; n - (s+1) + j, x), for n >= 1, and RT(s; 0, x) = 1. This, in turn, can be proved by induction over n >= 1 from the simpler recurrence for RT(s) obtained directly from the Rodrigues-type definition, namely RT(s; n, x) = x^s*RT(s; n-1, x) - (d/dx)RT(s; n-1, x), n >= 1,with RT(s; 0, x) = 1.
The e.g.f. of the triangle T(s), that is of the row polynomials {RT(s;n, x)}_{n>=0}, is E(s; t, x) = exp((x^(s+1) - (x - t)^(s+1))/(s+1)). This can be proved from the simple RT(s) recurrence, leading to (d/dt + d/dx)E(s; t, x) = x^s*E(s; t, x), with E(s; 0, x) = 1. After using E(s; t, x) = 1*exp(x^(s+1)/(s+1) + f(s; t, x)), with f(s; 0, x) = -x^(s+1)/(s+1), this becomes (d/dx - d/dt)f(s; t, x) = 0 meaning that f is a function of y = x - t, say, g(s; y) = -y^(s+1)/(s+1) because it has to become f(s; 0, x) for t = 0.
The explicit form for (-1,s)S2 is a(s; n, m) = (-1)^(n*s -m)*((s+1)*n - m-1)!/((s+1)^(n-1)*(n-1)!)*Sum_{j=0..floor((m-s)/(s+1))} (-1)^j* binomial(n-1, j)*binomial((s+1)*(n-1-j), m - s - (s+1)*j). One can prove the corresponding formula for T(s; n, m) by showing that it satisfies the T(s) recurrence T(s; n, m) = T(s; n-1, m-l) + (m+1)*T(s; n-1, m+1), for n >= 1, with T(s; 0, 0) = 1, and 0 for m < 0 or m > s*n.
The present entry is the instance s = 2, with the formulas given below. (End)

Examples

			Triangle starts:
{1},
{2, -2, 1},
{40, -40, 20, -6, 1},
{2240, -2240, 1120, -360, 80, -12, 1},
{246400, -246400, 123200, -40320, 9520, -1680, 220, -20, 1}.
		

Crossrefs

Column sequences for m=2..8 and n >= ceiling(m/2) are A052502(n-1), -A052502(n-1), A091535(n-1), -6*A091753(n), A091754(n), -12*A091755(n), A091756(n).

Programs

  • Mathematica
    w[n_, k_] := (Gamma[n-k/3] Gamma[1/3+n-k/3])/(Gamma[1/3-k/3] Gamma[-k/3]);
    T[n_, k_] := 9^n Sum[(-1)^(k - j)  w[n, j]/((k - j)! j!), {j, 1, k}];
    Table[Round[T[n,k]], {n,1,6}, {k, 2, 2 n}] (* Peter Luschny, Feb 05 2020 *)

Formula

a(n, m) = (((-1)^m)/m!)*Sum_{p=2..m} (-1)^p*binomial(m, p)*Product_{j=1..n} fallfac(p-3*(j-1), 2), n >= 1, 2 <= m <= 2*n, otherwise 0. From eq. (12) of the Blasiak et al. reference (see A078740) with r=-1, s=2, k=m.
Recurrence: a(n, m) = Sum_{p=0..2} binomial(2, p)*fallfac(-3*(n-1)+m-p, 2-p)*a(n-1, m-p), n >= 2, 2 <= m <= 2*n, a(1, 2) = 1, otherwise 0. Rewritten from eq. (19) of the Schork reference (see A078740) with r = -1, s = 2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).
Recurrence (Carlitz): a(n m) = a(n-1, m-2) - 2*(3*n - (m +2))*a(n-1, m-1) + (3*n - (m + 3))*(3*n - (m + 2))*a(n-1, m), for n >= 2, m >= 1, and a(n, m) = 0 if m <= 1 or m > 2*n, and a(1, 2) = 1. - Wolfdieter Lang, Dec 16 2019
From Werner Schulte, Jan 29 2020: (Start)
a(n, m) = T(3*n - m - 1, m - 2), for n > = 1 and m = 2, 3, ..., 2*n, with the irregular triangle defined by (-1)^n*exp(x^3/3)*(d/dx)^n exp(-x^3/3) = RT(n, x) = Sum_{k=0..2*n} T(n, k)*x^k, for n >= 0. For T(n, k) see A331816.
The recurrence RT(n, x) = x^2*RT(n-1, x) - (d/dx)RT(n-1, x), n >= 1, with RT(0, x) = 1, implies the T recurrence T(n, k) = T(n-1, k-2) - (k+1)*T(n-1, k+1), for n >= 1, with T(0, 0) = 1, and T(n, m) = 0 for m < 0 and m > 2*n. Also, by induction over n: RT(n, x) = x^2*RT(n-1, x) - 2*(n-1)*x*RT(n-2, x) + (n-1)*(n-2)*RT(n-3, x), using the former recurrence and inserting the derivatives. This translates to an obvious further recurrence for the irregular triangle T. It is used in order to prove the Carlitz recurrence for the index shifted aHat(n, m) = a(n+1, m + 2).
The e.g.f. of the irregular triangle, that is of the row polynomials RT, is E(t, x) = exp((x^3 - (x - t)^3)/3). See the comment above for a proof (setting s=2 there).
The explicit form is a(n, m) = (-1)^m*(3*n - m - 1)!/(3^(n-1)*(n-1)!)*Sum_{j=0..floor((m-2)/3)} (-1)^j*binomial(n-1, j)*binomial(3*(n-1-j), m -2 - 3*j), for n >= 1, and 2 <= m <= 2*n.
(End)
T(n, k) = 9^n*Sum_{j=1..k} (-1)^(k-j)*w(n,j)/((k-j)!*j!) where w(n,k) = (Gamma(n-k/3)*Gamma((1-k)/3+n))/(Gamma((1-k)/3)*Gamma(-k/3)). - Peter Luschny, Feb 05 2020

A091746 Generalized Stirling2 array (6,2).

Original entry on oeis.org

1, 30, 12, 1, 2700, 1920, 426, 36, 1, 491400, 478800, 162540, 25344, 1956, 72, 1, 150368400, 181440000, 80451000, 17624880, 2130660, 147840, 5820, 120, 1, 69470200800, 98424849600, 52905560400, 14618016000, 2346624000, 232202880
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2, A091534 (5, 2)-Stirling2.
Cf. A091544 (first column), A091550 (second column divided by 12).
Cf. A091748 (row sums), A091750 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := (-1)^k/k! Sum[(-1)^p Binomial[k, p] Product[FactorialPower[p + 4*(j-1), 2], {j, 1, n}], {p, 2, k}]; Table[a[n, k], {n, 1, 8}, {k, 2, 2n} ] // Flatten (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+4*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=6, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(4*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=6, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A091747 Generalized Stirling2 array (7,2).

Original entry on oeis.org

1, 42, 14, 1, 5544, 3192, 588, 42, 1, 1507968, 1165248, 321552, 41496, 2688, 84, 1, 696681216, 655966080, 232606080, 41497344, 4143552, 240240, 7980, 140, 1, 489070213632, 533531142144, 226306918656, 50249808000, 6575950080
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2, A091534 (5, 2)-Stirling2, A091746 (6, 2)-Stirling2.
Cf. A091545 (first column).
Cf. A091749 (row sums), A091751 (alternating row sums).

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+5*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=7, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(5*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=7, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A092077 Generalized Stirling2 array (8,2).

Original entry on oeis.org

1, 56, 16, 1, 10192, 4928, 776, 48, 1, 3872960, 2477440, 575680, 63360, 3536, 96, 1, 2517424000, 1940556800, 572868800, 86163840, 7326880, 364800, 10480, 160, 1, 2497284608000, 2210343116800, 773352966400, 143430604800, 15836206400, 1099612800, 49056960, 1398400, 24520, 240, 1
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

Crossrefs

The generalized (k, 2)-Stirling2 arrays are, for k=2, ..., 7: A078739, A078740, A090438, A091534, A091746 and A091747.
Cf. A091546, A091552 (first, resp. second column). A091757 (row sums). A091758 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := ((-1)^k/k!) Sum[(-1)^p Binomial[k, p] Product[FactorialPower[ p + 6(j-1), 2], {j, 1, n}], {p, 2, k}];
    Table[a[n, k], {n, 1, 6}, {k, 2, 2n}] // Flatten (* Jean-François Alcover, Feb 28 2020 *)

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+6*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=8, s=2.
Recursion: a(n, k) = sum(binomial(2, p)*fallfac(6*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=8, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A078738 Generalized Bell numbers B_{3,2}(n).

Original entry on oeis.org

1, 13, 355, 16333, 1121881, 106708921, 13354028563, 2118817455385, 414426460442833, 97746679844312581, 27311169061720393411, 8908525371578726747173, 3350963996380181114090665, 1438463413778071631322236593, 698374517715612292764726380851
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Crossrefs

B_{1, 1} = A000110, B_{2, 1} = A000262, B_{3, 1} = A020556 and B_{3, 3} = A069223. Row sums of A078740.
Alternating row sums A090437.

Programs

  • Mathematica
    a[n_] := (n+1)*n!^2*Sum[(-1)^k*HypergeometricPFQ[{2-k, n+1, n+2}, {2, 3}, 1]/(2*(k-2)!), {k, 2, 2n}]; Array[a, 13] (* Jean-François Alcover, Sep 01 2015 *)
    Table[Sum[(n + k)!*(n + k + 1)!/(k!*(k + 1)!*(k + 2)!), {k, 0, Infinity}]/E, {n, 1, 20}] (* Vaclav Kotesovec, Jul 27 2018 *)
  • PARI
    nmax = 20; p = floor(3*nmax*log(nmax)); default(realprecision, p);
    for(n=1, nmax, print1(round(exp(-1)*suminf(k=0, (n+k)!*(n+k+1)!/(k!*(k+1)!*(k+2)!))), ", ")) \\ G. C. Greubel and Vaclav Kotesovec, Jul 28 2018

Formula

a(n) = Sum_{k=2..2*n} A078740(n, k) = Sum_{k=1..infinity} (1/k!)*Product_{j=1..n}(fallfac(k+(j-1)*(3-2), 2))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=3, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
a(n) = Sum_{k>=0} ((n+k)!*(n+k+1)!/(k!*(k+1)!*(k+2)!))/exp(1), n>=1. From eq.(40) of the Blasiak et al. reference. [corrected by Vaclav Kotesovec, Jul 27 2018]
E.g.f. for a(n)/n! with a(0)=(exp(1)-1)/exp(1) added: Sum_{k>=0} (hypergeom([k+2, k+1], [1], z)/(k+2)!)/exp(1). From eq. (41) of the Blasiak et al. reference.

Extensions

Edited by Wolfdieter Lang, Dec 23 2003

A091553 Third column (k=6) sequence of array A090214 ((4,4)-Stirling2) divided by 72.

Original entry on oeis.org

1, 704, 300096, 113762304, 41644855296, 15075073327104, 5436979231850496, 1958506906364411904, 705205813266345885696, 253891292037560301256704, 91402929045514567230160896, 32905302125838589613523861504
Offset: 0

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Cf. A089518 (third column of array (3, 3)-Stirling2 divided by 9).

Formula

a(n)= A090214(n+2, 6)/72, n>=0.
a(n)= (15*(6*5*4*3)^n - 10*(5*4*3*2)^n + (4*3*2*1)^n)/3!.
G.f.: (1+200*x)/product(1-fallfac(p, 4)*x, p=4..6), with fallfac(n, m) := A008279(n, m) (falling factorials).
a(n)= ((4!)^n)*(1-2*5^(n+1)+binomial(6, 2)^(n+1))/3!. From eq.12 of the Blasiak et al. reference given in A078740 with r=4=s, k=6.
Previous Showing 11-16 of 16 results.