cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A116429 The number of n-almost primes less than or equal to 9^n, starting with a(0)=1.

Original entry on oeis.org

1, 4, 26, 181, 1095, 6416, 35285, 187929, 973404, 4934952, 24628655, 121375817, 592337729, 2868086641, 13798982719, 66043675287, 314715355786, 1494166794434, 7071357084444, 33374079939405
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 9^n], {n, 13}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(9^n, n)); \\ Daniel Suteu, Jul 10 2023

Extensions

a(14)-a(16) from Donovan Johnson, Oct 01 2010
a(16) corrected and a(17)-a(19) from Daniel Suteu, Jul 10 2023

A116431 The number of n-almost primes less than or equal to 12^n, starting with a(0)=1.

Original entry on oeis.org

1, 5, 48, 434, 3695, 29165, 218283, 1569995, 10950776, 74621972, 499495257, 3297443264, 21533211312, 139411685398, 896352197825, 5730605551626, 36465861350230
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 12^n], {n, 12}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(12^n, n)); \\ Daniel Suteu, Jul 10 2023
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A116431(n):
        if n<=1: return 4*n+1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(12**n//prod(c[1] for c in a))-a[-1][0] for a in g(12**n,0,1,1,n))) # Chai Wah Wu, Sep 28 2024

Extensions

a(13)-a(14) from Donovan Johnson, Oct 01 2010
a(15)-a(16) from Daniel Suteu, Jul 10 2023

A116432 The number of n-almost primes less than or equal to e^n, starting with a(0)=1.

Original entry on oeis.org

1, 1, 2, 4, 5, 7, 12, 18, 24, 37, 54, 74, 107, 159, 218, 315, 450, 634, 888, 1269, 1782, 2496, 3520, 4933, 6899, 9681, 13555, 18888, 26407, 36855, 51352, 71526, 99654, 138608, 192708, 267833, 372107, 516420, 716816, 994191, 1378195, 1909694
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, E^n], {n, 42}]
Previous Showing 11-13 of 13 results.