cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A329235 Number of nonequivalent symmetric sets whose translations cover {1..n}.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 12, 19, 23, 36, 44, 68, 84, 128, 161, 243, 308, 462, 592, 882, 1140, 1690, 2200, 3249, 4255, 6264, 8246, 12110, 16008, 23466, 31128, 45566, 60618, 88644, 118205, 172731, 230782, 337072, 451082, 658628, 882582, 1288432, 1728484, 2523104, 3388084
Offset: 1

Views

Author

Andrew Howroyd, Nov 08 2019

Keywords

Comments

Equivalence is up to translation. Only translations that are subsets of {1..n} are included.
Symmetric sets are those such that the set remains unchanged after mapping each element x to m - x, where m is the sum of the greatest and least elements. All sets of at most two elements are symmetric.

Examples

			For n = 6 there are 10 symmetric sets (up to equivalence) that with their translations cover {1..6}:
  {{1}, {2}, {3}, {4}, {5}, {6}};
  {{1, 4}, {2, 5}, {3, 6}};
  {{1, 3}, {2, 4}, {3, 5}, {4, 6}};
  {{1, 3, 5}, {2, 4, 6}};
  {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}};
  {{1, 2, 4, 5}, {2, 3, 5, 6}};
  {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}};
  {{1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}};
  {{1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}};
  {{1, 2, 3, 4, 5, 6}}.
		

Crossrefs

Cf. A079500 (if symmetry is not required).

A356114 Number of irreducible permutations of n with partition type [2, 1, 1, ..., 1] (with '1' taken n - 2 times).

Original entry on oeis.org

0, 0, 0, 2, 9, 24, 55, 118, 245, 500, 1011, 2034, 4081, 8176, 16367, 32750, 65517, 131052, 262123, 524266, 1048553, 2097128, 4194279, 8388582, 16777189, 33554404, 67108835, 134217698, 268435425, 536870880, 1073741791, 2147483614, 4294967261, 8589934556, 17179869147
Offset: 0

Views

Author

Peter Luschny, Aug 01 2022

Keywords

Comments

Irreducible permutations in connection with partition types are discussed in A356262. Compare with the subdiagonal of A356263.

Examples

			a(4) = 9 = card({2413, 2431, 3142, 3241, 3421, 4132, 4213, 4231, 4312}). The other two permutations of type [2, 1, 1], 1432 and 3214, are reducible. That there are 11 permutations of type [2, 1, 1] we know from Euler's triangle A173018 or from its refined form A355777.
		

Crossrefs

Programs

  • Maple
    seq(`if`(n < 3, 0, combinat:-eulerian1(n, n - 2) - 2), n = 0..34);

Formula

a(n) = 2^n - n - 3 for n >= 3.
a(n) = Eulerian1(n, n - 2) - 2 for n >= 3.
G.f.: x^3*(2*x^2 - x - 2)/((x - 1)^2*(2*x - 1)).
a(n) = A356263(n, n - 2) for n >= 2.

A368746 Compositions (ordered partitions) of n into odd parts where the first part must be a maximal part.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 18, 27, 40, 61, 93, 142, 217, 333, 512, 789, 1217, 1881, 2912, 4514, 7007, 10893, 16956, 26427, 41238, 64426, 100767, 157778, 247301, 388007, 609351, 957836, 1506928, 2372763, 3739035, 5896462, 9305388, 14695124, 23221657, 36718116, 58092690, 91961034
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2024

Keywords

Examples

			The a(10) = 18 such compositions are:
   1:  [ 1 1 1 1 1 1 1 1 1 1 ]
   2:  [ 3 1 1 1 1 1 1 1 ]
   3:  [ 3 1 1 1 1 3 ]
   4:  [ 3 1 1 1 3 1 ]
   5:  [ 3 1 1 3 1 1 ]
   6:  [ 3 1 3 1 1 1 ]
   7:  [ 3 1 3 3 ]
   8:  [ 3 3 1 1 1 1 ]
   9:  [ 3 3 1 3 ]
  10:  [ 3 3 3 1 ]
  11:  [ 5 1 1 1 1 1 ]
  12:  [ 5 1 1 3 ]
  13:  [ 5 1 3 1 ]
  14:  [ 5 3 1 1 ]
  15:  [ 5 5 ]
  16:  [ 7 1 1 1 ]
  17:  [ 7 3 ]
  18:  [ 9 1 ]
		

Crossrefs

Cf. A079500.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1, `if`(m=0,
          add(b(n-2*j+1, 2*j-1), j=1..(n+1)/2), add(
          b(n-2*j+1, min(n-2*j+1, m)), j=1..(min(n, m)+1)/2)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..45);  # Alois P. Heinz, Jan 04 2024
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0,
        Sum[b[n - 2j + 1, 2j - 1], {j, 1, (n + 1)/2}], Sum[
        b[n - 2j + 1, Min[n - 2j + 1, m]], {j, 1, (Min[n, m] + 1)/2}]]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 03 2024, after Alois P. Heinz *)
  • PARI
    my(N=44, x='x+O('x^N)); Vec(1+sum(n=1, N, x^(2*n-1)/(1-sum(k=1, n, x^(2*k-1)))))

Formula

G.f.: 1 + Sum_{n>=1} x^(2*n-1)/(1 - Sum_{k=1..n} x^(2*k-1) ).

A186523 In lunar arithmetic in base 3, this is the number of lunar divisors of the number 111...1 (with n 1's).

Original entry on oeis.org

2, 6, 14, 34, 82, 206, 526, 1378, 3674, 9950, 27278, 75514, 210634, 591054, 1666406, 4716186, 13389434, 38113462, 108737894, 310851770, 890244546, 2553782246, 7337143110, 21110531858, 60823037522, 175471424214, 506862346750, 1465875933394, 4244315841666, 12302751068958, 35699515448510, 103697897085458, 301514033677482, 877521633678990
Offset: 1

Views

Author

N. J. A. Sloane, Feb 24 2011

Keywords

Crossrefs

Cf. A079500 (the base 2 analog).
Previous Showing 41-44 of 44 results.