A259760 Triangle read by rows: T(n,k) is the number of partial idempotent mappings (of an n-chain) with breadth exactly k.
1, 1, 1, 1, 2, 3, 1, 3, 9, 10, 1, 4, 18, 40, 41, 1, 5, 30, 100, 205, 196, 1, 6, 45, 200, 615, 1176, 1057, 1, 7, 63, 350, 1435, 4116, 7399, 6322, 1, 8, 84, 560, 2870, 10976, 29596, 50576, 41393, 1, 9, 108, 840, 5166, 24696, 88788, 227592, 372537, 293608
Offset: 0
Examples
T(3,2) = 9 because there are exactly 9 partial idempotent mappings (of a 3-chain) with breadth exactly 2, namely: (12-->11), (12-->22), (12-->12), (13-->11), (13-->33), (13-->13), (23-->22), (23-->33), (23-->23). Triangle starts: 1; 1, 1; 1, 2, 3; 1, 3, 9, 10; 1, 4, 18, 40, 41; ...
References
- F. AlKharosi, W. AlNadabi and A. Umar, "Combinatorial results for idempotents in full and partial transformation semigroups", (submitted).
Links
- Haoliang Wang, Robert Simon, The Analysis of Synchronous All-to-All Communication Protocols for Wireless Systems, Q2SWinet'18: Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks (2018), 39-48.
Programs
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n,k)*sum(m=0, k, binomial(k,m)*m^(k-m)), ", ");); print(););} \\ Michel Marcus, Jul 15 2015
Formula
T(n,k) = binomial(n,k) * Sum_{m=0..k} binomial(k,m)*m^(k-m).
Extensions
More terms from Michel Marcus, Jul 15 2015