cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A360638 Number of sets of nonempty words over binary alphabet where each letter occurs n times.

Original entry on oeis.org

1, 3, 16, 100, 593, 3497, 20316, 116378, 658214, 3679450, 20350028, 111459648, 605060633, 3257784589, 17408647968, 92378535290, 487031130699, 2552197485757, 13298890952222, 68930923717598, 355507581655752, 1824924721216084, 9326440815314046, 47464093855706540
Offset: 0

Views

Author

Alois P. Heinz, Feb 14 2023

Keywords

Examples

			a(0) = 1: {}.
a(1) = 3: {ab}, {ba}, {a,b}.
a(2) = 16: {aabb}, {abab}, {abba}, {baab}, {baba}, {bbaa}, {a,abb}, {a,bab}, {a,bba}, {aa,bb}, {aab,b}, {ab,ba}, {aba,b}, {b,baa}, {a,ab,b}, {a,b,ba}.
		

Crossrefs

Cf. A080277, A360626 (the same for multisets), A360634.

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    a:= n-> coeff(b(2*n$2), x, n):
    seq(a(n), n=0..31);
  • Mathematica
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[
        g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1,
        If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
    a[n_] := Coefficient[b[2n, 2n], x, n];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Dec 09 2023, after Alois P. Heinz *)

Formula

a(n) = A360634(2n,n).
a(n) mod 2 = 1 <=> n in { A080277 } U {0}.

A327327 Partial sums of the sum of nonpowers of 2 dividing n.

Original entry on oeis.org

0, 0, 3, 3, 8, 17, 24, 24, 36, 51, 62, 83, 96, 117, 140, 140, 157, 193, 212, 247, 278, 311, 334, 379, 409, 448, 487, 536, 565, 634, 665, 665, 712, 763, 810, 894, 931, 988, 1043, 1118, 1159, 1252, 1295, 1372, 1449, 1518, 1565, 1658, 1714, 1804, 1875, 1966, 2019, 2136, 2207, 2312, 2391, 2478, 2537, 2698
Offset: 1

Views

Author

Omar E. Pol, Sep 14 2019

Keywords

Comments

a(n) can be represented with a diagram since the symmetric diagram of A024916(n) is greater than or equal to the diagram of A080277(n). The difference between both diagrams is a representation of a(n). For more information about the symmetric diagram of A024916 see A236104 and A237593.

Examples

			The divisors of 6 are 1, 2, 3, 6. But 1 and 2 are powers of 2, so we only add up 3, 6 to get 9, and add that to the running total of 8 to get a(6) = 17.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[1, n] - Denominator[DivisorSigma[1, 2n]/DivisorSigma[1, n]], {n, 100}]] (* Alonso del Arte, Nov 18 2019, based on Wesley Ivan Hurt's program for A326988 *)

Formula

a(n) = A024916(n) - A080277(n).
a(n) = a(n-1) when n is a power of 2.

A122701 a(0)=0, a(n) = 2*a(floor(n/2)) + n - 1 for n > 0.

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 9, 10, 17, 18, 21, 22, 29, 30, 33, 34, 49, 50, 53, 54, 61, 62, 65, 66, 81, 82, 85, 86, 93, 94, 97, 98, 129, 130, 133, 134, 141, 142, 145, 146, 161, 162, 165, 166, 173, 174, 177, 178, 209, 210, 213, 214, 221, 222, 225, 226, 241, 242, 245, 246, 253, 254
Offset: 0

Views

Author

Peter C. Heinig (algorithms(AT)gmx.de), Oct 21 2006

Keywords

Comments

The recurrence defining this sequence arises in the study of the Merge Sort algorithm. By the master theorem, a(n) is in BigTheta(n*log_2(n)).

Crossrefs

Cf. A080277.

Programs

  • Maple
    a[0]:=0: for n from 1 to 101 do a[n]:=2*a[floor(n/2)] + n-1; od: seq( a[n], n=0..101);
  • Mathematica
    a[0]=0;a[n_]:=2*a[Floor[n/2]]+n-1;Table[a[n],{n,0,61}] (* James C. McMahon, Nov 09 2024 *)

Extensions

Missing a(0) inserted by James C. McMahon, Nov 09 2024
Previous Showing 21-23 of 23 results.