A178979
Triangular array read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the shortest block has length k (1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 4, 0, 1, 11, 3, 0, 1, 41, 10, 0, 0, 1, 162, 30, 10, 0, 0, 1, 715, 126, 35, 0, 0, 0, 1, 3425, 623, 56, 35, 0, 0, 0, 1, 17722, 2934, 364, 126, 0, 0, 0, 0, 1, 98253, 15165, 2220, 210, 126, 0, 0, 0, 0, 1, 580317, 86900, 10560, 330, 462, 0, 0, 0, 0, 0, 1
Offset: 1
T(4,2) = card ({12|34, 13|24, 14|23}) = 3. - _Peter Luschny_, Apr 05 2011
Triangle begins:
1;
1, 1;
4, 0, 1;
11, 3, 0, 1;
41, 10, 0, 0, 1;
162, 30, 10, 0, 0, 1;
715, 126, 35, 0, 0, 0, 1;
...
-
g := k-> exp(x)*(1-(GAMMA(k,x)/GAMMA(k))); egf := k-> exp(g(k))-exp(g(k+1));
T := (n,k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..9); # Peter Luschny, Apr 05 2011
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add(b(n-i*j, i+1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
end:
T:= (n, k)-> b(n, k) -b(n, k+1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 25 2016
-
a[k_]:= Exp[x]-Sum[x^i/i!,{i,0,k}]; Transpose[Table[Range[20]! Rest[CoefficientList[Series[Exp[a[k-1]]-Exp[a[k]],{x,0,20}],x]],{k,1,9}]]//Grid
A229245
Number of set partitions of {1,...,n} with largest set of size 3.
Original entry on oeis.org
1, 4, 20, 90, 420, 2016, 10024, 51640, 276980, 1540440, 8899176, 53313624, 330835960, 2124646720, 14102514560, 96622736256, 682608577104, 4966188238080, 37166169295360, 285813960789280, 2256147419689856, 18263257380872064, 151466260791609600
Offset: 3
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n,3)-G(n,2):
seq(a(n), n=3..30);
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n - i j, i - 1] n!/ i!^j/(n - i j)!/j!, {j, 0, n/i}]]];
a[n_] := b[n, 3] - b[n, 2];
a /@ Range[3, 30] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz in A080510 *)
A229246
Number of set partitions of {1,...,n} with largest set of size 4.
Original entry on oeis.org
1, 5, 30, 175, 1015, 6111, 38010, 244035, 1624425, 11187605, 79695616, 586787565, 4460703065, 34979737625, 282686608170, 2352035472141, 20130594430095, 177076978131795, 1599554765785900, 14826174374092235, 140904888153964011, 1372081103132069275
Offset: 4
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n,4)-G(n,3):
seq(a(n), n=4..30);
-
nn=25;Drop[Range[0,nn]!CoefficientList[Series[(Exp[x^4/4!]-1)Exp[x+x^2/2!+x^3/3!],{x,0,nn}],x],4] (* Geoffrey Critzer, Oct 09 2013 *)
A229247
Number of set partitions of {1,...,n} with largest set of size 5.
Original entry on oeis.org
1, 6, 42, 280, 1890, 12978, 91938, 671616, 5064345, 39439400, 317158842, 2631497232, 22512271964, 198412838820, 1800062132940, 16795556650200, 161038724157045, 1585408383273330, 16013462706719170, 165819496710741720, 1759058150311036806, 19103856738729254206
Offset: 5
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n,5)-G(n,4):
seq(a(n), n=5..30);
-
nmin = size = 5; nmax = 30;
g[k_] := Exp[Sum[x^j/j!, {j, 1, k}]];
cc = CoefficientList[g[size]-g[size-1]+O[x]^(nmax+1), x]*Range[0, nmax]!;
a[n_] := cc[[n+1]];
a /@ Range[nmin, nmax] (* Jean-François Alcover, Mar 07 2021 *)
A229248
Number of set partitions of {1,...,n} with largest set of size 6.
Original entry on oeis.org
1, 7, 56, 420, 3150, 24024, 187110, 1497210, 12321309, 104379275, 910501592, 8176340536, 75557540604, 718108992888, 7015008076980, 70388350377492, 724955013327237, 7658820319677219, 82939240748756392, 920067296840668900, 10448713239329294930
Offset: 6
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n,6)-G(n,5):
seq(a(n), n=6..30);
A229249
Number of set partitions of {1,...,n} with largest set of size 7.
Original entry on oeis.org
1, 8, 72, 600, 4950, 41184, 348348, 3008148, 26608725, 241395440, 2247683152, 21485909952, 210840271980, 2123351405280, 21937875152760, 232419281905272, 2523691371079725, 28070949453307992, 319668800125675000, 3725037254807468600, 44393091629344788330
Offset: 7
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n,7)-G(n,6):
seq(a(n), n=7..30);
A229250
Number of set partitions of {1,...,n} with largest set of size 8.
Original entry on oeis.org
1, 9, 90, 825, 7425, 66924, 609609, 5643495, 53275365, 513949865, 5072383602, 51247279161, 530162317815, 5616049288500, 60907673202255, 676114396423257, 7679484722988045, 89216205660482175, 1059689275333095550, 12863300130089805825, 159506272335882076605
Offset: 8
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n,8)-G(n,7):
seq(a(n), n=8..30);
A229251
Number of set partitions of {1,...,n} with largest set of size 9.
Original entry on oeis.org
1, 10, 110, 1100, 10725, 104104, 1016015, 10032880, 100643400, 1028142830, 10712984282, 113961363880, 1238298284860, 13747432565790, 155944562191220, 1807325391776872, 21396572780305250, 258695925902828700, 3193365395052825850, 40233167990427412000
Offset: 9
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n,9)-G(n,8):
seq(a(n), n=9..30);
A229252
Number of set partitions of {1,...,n} with largest set of size 10.
Original entry on oeis.org
1, 11, 132, 1430, 15015, 156156, 1625624, 17055896, 181158120, 1953517566, 21426984722, 239340203466, 2724654560628, 31626047962432, 374383760685660, 4520229252281160, 55662052670665870, 698975472340315170, 8949358054013356980, 116803043793523277190
Offset: 10
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n,10)-G(n,9):
seq(a(n), n=10..30);
A339030
T(n, k) = Sum_{p in P(n, k)} card(p), where P(n, k) is the set of set partitions of {1,2,...,n} where the largest block has size k and card(p) is the number of blocks of p. Triangle T(n, k) for 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 8, 1, 0, 5, 85, 50, 10, 1, 0, 6, 300, 280, 75, 12, 1, 0, 7, 1071, 1540, 525, 105, 14, 1, 0, 8, 3976, 8456, 3570, 840, 140, 16, 1, 0, 9, 15219, 47208, 24381, 6552, 1260, 180, 18, 1
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 2, 1]
3: [0, 3, 6, 1]
4: [0, 4, 24, 8, 1]
5: [0, 5, 85, 50, 10, 1]
6: [0, 6, 300, 280, 75, 12, 1]
7: [0, 7, 1071, 1540, 525, 105, 14, 1]
8: [0, 8, 3976, 8456, 3570, 840, 140, 16, 1]
9: [0, 9, 15219, 47208, 24381, 6552, 1260, 180, 18, 1]
.
T(4,0) = 0 = 0*card({})
T(4,1) = 4 = 4*card({1|2|3|4}).
T(4,2) = 24 = 3*card({12|3|4, 13|2|4, 1|23|4, 14|2|3, 1|24|3, 1|2|34})
+ 2*card({12|34, 13|24, 14|23}).
T(4,3) = 8 = 2*card({123|4, 124|3, 134|2, 1|234}).
T(4,4) = 1 = 1*card({1234}).
.
Seen as the projection of a 2-dimensional statistic this is, for n = 6:
[ 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 6]
[ 0 0 0 45 180 75 0]
[ 0 0 20 180 80 0 0]
[ 0 0 30 45 0 0 0]
[ 0 0 12 0 0 0 0]
[ 0 1 0 0 0 0 0]
The row sum projection gives row 6 of this triangle, and the column sum projection gives [0, 1, 62, 270, 260, 75, 6], which appears in a decapitated version as row 5 in A321331.
Cf.
A005493 with 1 prepended are the row sums.
-
def A339030Row(n):
if n == 0: return [1]
M = matrix(n + 1)
for k in (1..n):
for p in SetPartitions(n):
if p.max_block_size() == k:
M[k, len(p)] += p.cardinality()
return [sum(M[k, j] for j in (0..n)) for k in (0..n)]
for n in (0..9): print(A339030Row(n))
Comments