cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A322443 Base-8 deletable primes (written in base 10).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 83, 89, 101, 107, 109, 131, 137, 139, 151, 157, 163, 167, 179, 181, 191, 197, 199, 211, 223, 229, 233, 239, 251, 269, 277, 293, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 421, 431, 443, 461, 467, 479, 491
Offset: 1

Views

Author

Robert Price, Dec 08 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 8; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]];
    d (* Robert Price, Dec 08 2018 *)
  • Python
    from sympy import isprime
    def ok(n):
        if not isprime(n): return False
        if n < 8: return True
        o = oct(n)[2:]
        oi = (o[:i]+o[i+1:] for i in range(len(o)))
        return any(t[0] != '0' and ok(int(t, 8)) for t in oi)
    print([k for k in range(492) if ok(k)]) # Michael S. Branicky, Jan 13 2022

A096236 Number of n-digit base-3 deletable primes.

Original entry on oeis.org

1, 2, 4, 7, 13, 24, 38, 72, 122, 226, 400, 684, 1246, 2381, 4384, 8330, 15839, 30617, 58764, 113987, 221994, 434498, 852036, 1673320, 3296641, 6509179
Offset: 1

Views

Author

Michael Kleber, Feb 28 2003

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. "Digit" means digit in base b.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 3; a = {1}; d = {2};
    For[n = 2, n <= 10, n++,
      p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &];
      ct = 0;
      For[i = 1, i <= Length[p], i++,
       c = IntegerDigits[p[[i]], b];
       For[j = 1, j <= n, j++,
        t = Delete[c, j];
        If[t[[1]] == 0, Continue[]];
        If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++;
         Break[]]]];
      AppendTo[a, ct]];
    a (* Robert Price, Nov 12 2018 *)
  • Python
    from sympy import isprime
    from sympy.ntheory.digits import digits
    def ok(n, prevset, base=3):
        if not isprime(n): return False
        s = "".join(str(d) for d in digits(n, base)[1:])
        si = (s[:i]+s[i+1:] for i in range(len(s)))
        return any(t[0] != '0' and int(t, base) in prevset for t in si)
    def afind(terms):
        s, snxt, base = {2}, set(), 3
        print(len(s), end=", ")
        for n in range(2, terms+1):
            for i in range(base**(n-1), base**n):
                if ok(i, s):
                    snxt.add(i)
            s, snxt = snxt, set()
            print(len(s), end=", ")
    afind(13) # Michael S. Branicky, Jan 14 2022

Extensions

More terms from John W. Layman, Dec 14 2004
11 more terms from Ryan Propper, Jul 19 2005

A096243 Number of n-digit base-10 deletable primes.

Original entry on oeis.org

4, 16, 94, 585, 3788, 25768, 182762, 1340905, 10135727, 78580647, 622188500
Offset: 1

Views

Author

Michael Kleber, Feb 28 2003

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 10; a = {4}; d = {2, 3, 5, 7};
    For[n = 2, n <= 5, n++,
      p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &];
      ct = 0;
      For[i = 1, i <= Length[p], i++,
       c = IntegerDigits[p[[i]], b];
       For[j = 1, j <= n, j++,
        t = Delete[c, j];
        If[t[[1]] == 0, Continue[]];
        If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; ct++;
         Break[]]]];
      AppendTo[a, ct]];
    a (* Robert Price, Nov 13 2018 *)
  • Python
    from sympy import isprime
    def ok(n, prevset):
        if not isprime(n): return False
        s = str(n)
        si = (s[:i]+s[i+1:] for i in range(len(s)))
        return any(t[0] != '0' and int(t) in prevset for t in si)
    def afind(terms):
        s, snxt = {2, 3, 5, 7}, set()
        print(len(s), end=", ")
        for n in range(2, terms+1):
            for i in range(10**(n-1), 10**n):
                if ok(i, s):
                    snxt.add(i)
            s, snxt = snxt, set()
            print(len(s), end=", ")
    afind(6) # Michael S. Branicky, Jan 14 2022

Extensions

a(6)-a(9) from Ryan Propper, Jul 19 2005
a(10) from Michael S. Branicky, Jan 14 2022
a(11) from Michael S. Branicky, Jul 06 2023

A321700 Base-5 deletable primes (written in base 10).

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 19, 23, 37, 47, 53, 59, 61, 67, 71, 73, 79, 89, 97, 103, 107, 113, 137, 197, 227, 239, 263, 269, 271, 307, 311, 317, 337, 347, 353, 359, 367, 373, 379, 389, 397, 439, 449, 479, 487, 503, 523, 547, 557, 563, 569, 571, 607, 613, 677, 727, 739, 887, 947, 977
Offset: 1

Views

Author

Robert Price, Nov 17 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 5; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
      c = IntegerDigits[p[[i]], b];
      If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
      For[j = 1, j <= Length[c], j++,
       t = Delete[c, j];
       If[t[[1]] == 0, Continue[]];
       If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]];
    d (* Robert Price, Dec 06 2018 *)

A321910 Base-7 deletable primes (written in base 10).

Original entry on oeis.org

2, 3, 5, 17, 19, 23, 31, 37, 41, 47, 101, 103, 131, 137, 139, 149, 163, 167, 191, 199, 223, 227, 233, 241, 251, 263, 293, 311, 313, 317, 331, 691, 709, 719, 727, 733, 787, 823, 853, 877, 887, 919, 929, 937, 977, 983, 997, 1013, 1019, 1021, 1031, 1049, 1129, 1171, 1367, 1399, 1409, 1511
Offset: 1

Views

Author

Robert Price, Nov 29 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 7; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
      c = IntegerDigits[p[[i]], b];
      If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
      For[j = 1, j <= Length[c], j++,
       t = Delete[c, j];
       If[t[[1]] == 0, Continue[]];
       If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]];
    d (* Robert Price, Dec 06 2018 *)

A322173 Base-6 deletable primes (written in base 10).

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 41, 47, 53, 59, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 283, 293, 311, 313, 317, 347, 353, 359, 373, 379, 383, 389, 397
Offset: 1

Views

Author

Robert Price, Nov 29 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 6; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
      c = IntegerDigits[p[[i]], b];
      If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
      For[j = 1, j <= Length[c], j++,
       t = Delete[c, j];
       If[t[[1]] == 0, Continue[]];
       If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]];
    d (* Robert Price, Dec 06 2018 *)

A322471 Base-9 deletable primes (written in base 10).

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 23, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 137, 163, 167, 173, 179, 181, 191, 193, 199, 211, 223, 229, 233, 239, 241, 263, 269, 281, 283, 317, 331, 347, 349, 353, 367, 373, 383, 389, 401, 431, 443, 449, 461, 467, 479, 491, 509, 547, 557, 563
Offset: 1

Views

Author

Robert Price, Dec 09 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 9; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]];
    d (* Robert Price, Dec 09 2018 *)

A322474 Primes that are not base-10 deletable primes (written in base 10).

Original entry on oeis.org

11, 19, 41, 61, 89, 101, 109, 149, 151, 181, 191, 199, 211, 227, 241, 251, 257, 277, 281, 349, 389, 401, 409, 419, 421, 449, 461, 491, 499, 521, 541, 557, 577, 587, 601, 619, 641, 661, 691, 727, 757, 787, 809, 811, 821, 827, 857, 877, 881, 887, 911, 919, 941, 991, 1009, 1019, 1021, 1049, 1051, 1061
Offset: 1

Views

Author

Robert Price, Dec 09 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. Thus 2003 is in this sequence but not in A081027.
Complement of all nonprimes and A305352.

Crossrefs

Programs

  • Mathematica
    b = 10; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* Robert Price, Dec 09 2018 *)

A322475 Base-11 deletable primes (written in base 10).

Original entry on oeis.org

2, 3, 5, 7, 13, 23, 29, 31, 37, 41, 43, 47, 59, 61, 71, 73, 79, 83, 101, 113, 149, 151, 167, 211, 233, 251, 257, 263, 271, 283, 293, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 389, 409, 433, 439, 457, 461, 479, 487, 509, 521, 523, 557, 563, 631, 653, 659, 673, 677, 719, 733, 739
Offset: 1

Views

Author

Robert Price, Dec 09 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 11; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]];
    d (* Robert Price, Dec 09 2018 *)

A322477 Base-12 deletable primes (written in base 10).

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 317, 331, 347, 349, 353, 359, 367, 373, 379
Offset: 1

Views

Author

Robert Price, Dec 09 2018

Keywords

Comments

A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.

Crossrefs

Programs

  • Mathematica
    b = 12; d = {};
    p = Select[Range[2, 10000], PrimeQ[#] &];
    For[i = 1, i <= Length[p], i++,
    c = IntegerDigits[p[[i]], b];
    If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
    For[j = 1, j <= Length[c], j++,
    t = Delete[c, j];
    If[t[[1]] == 0, Continue[]];
    If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]];
    d (* Robert Price, Dec 09 2018 *)
Previous Showing 11-20 of 43 results. Next