Original entry on oeis.org
1, 2, 5, 16, 63, 297, 1649, 10641, 78823, 662315, 6241889, 65294039, 751035233, 9420926879, 127958645921, 1870319380463, 29263787708393, 487891616911031, 8632986776222945, 161555987833199807, 3187606376603319017, 66128414623822131863, 1438861202348688524897, 32763278185929878499887
Offset: 0
-
Table[Sum[Sum[Abs[StirlingS1[n-k,m]](m+1)^k,{m,0,n-k}],{k,0,n}],{n,0,23}]
Original entry on oeis.org
1, 10, 25, -35, 49, 0, -820, 9020, -87164, 859144, -8965320, 100136400, -1199838576, 15406135488, -211479420096, 3094582896000, -48129022468224, 793274283938304, -13818265424460288, 253731538514893824, -4899371564756837376, 99261476593521868800
Offset: 4
-
b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
(n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..28); # Alois P. Heinz, Aug 26 2021
# alternative
seq(A008296(n,4),n=4..70) ; # R. J. Mathar, Sep 15 2021
-
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
a[n_, n_] = 1;
a[n_, k_] := a[n, k] = (n - 1) a[n - 2, k - 1] +
a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
Flatten[Table[N[a[n + 4, 4], 10], {n, 1, 400}]]
-
a(n) = sum(m=4, n, binomial(m, 4)*4^(m-4)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021
Original entry on oeis.org
1, 6, 5, -15, 49, -196, 944, -5340, 34716, -254760, 2078856, -18620784, 180973584, -1887504768, 20887922304, -242111586816, 2889841121280, -34586897978880, 393722260047360, -3659128846433280, 5687630494110720, 1137542166526464000, -49644151627682304000
Offset: 3
-
b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
(n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..30); # Alois P. Heinz, Aug 25 2021
-
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
a[n_, n_] = 1;
a[n_, k_] := a[n, k] = (n - 1) a[n - 2, k - 1] +
a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
Flatten[Table[a[n + 3, 3], {n, 0, 30}]]
-
a(n) = sum(m=3, n, binomial(m, 3)*3^(m-3)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021