cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A344640 Antidiagonal sums of A344639.

Original entry on oeis.org

1, 2, 5, 16, 63, 297, 1649, 10641, 78823, 662315, 6241889, 65294039, 751035233, 9420926879, 127958645921, 1870319380463, 29263787708393, 487891616911031, 8632986776222945, 161555987833199807, 3187606376603319017, 66128414623822131863, 1438861202348688524897, 32763278185929878499887
Offset: 0

Views

Author

Stefano Spezia, May 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Abs[StirlingS1[n-k,m]](m+1)^k,{m,0,n-k}],{k,0,n}],{n,0,23}]

Formula

a(n) = Sum_{k=0..n} Sum_{m=0..n-k} abs(S1(n-k, m))*(m + 1)^k, where S1 indicates the signed Stirling numbers of first kind.
Conjecture: a(n) ~ n!. - Vaclav Kotesovec, May 26 2021

A345651 Fourth column of A008296.

Original entry on oeis.org

1, 10, 25, -35, 49, 0, -820, 9020, -87164, 859144, -8965320, 100136400, -1199838576, 15406135488, -211479420096, 3094582896000, -48129022468224, 793274283938304, -13818265424460288, 253731538514893824, -4899371564756837376, 99261476593521868800
Offset: 4

Views

Author

Luca Onnis, Aug 26 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
          (n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..28);  # Alois P. Heinz, Aug 26 2021
    # alternative
    seq(A008296(n,4),n=4..70) ; # R. J. Mathar, Sep 15 2021
  • Mathematica
    a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
    a[n_, n_] = 1;
    a[n_, k_] := a[n, k] = (n - 1) a[n - 2, k - 1] +
        a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
    Flatten[Table[N[a[n + 4, 4], 10], {n, 1, 400}]]
  • PARI
    a(n) = sum(m=4, n, binomial(m, 4)*4^(m-4)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021

Formula

a(n) = A008296(n,4).
a(n) = (-1)^n*(4*H(n-5,1)^3 + 8*H(n-5,3) - 12*H(n-5,2)*H(n-5,1) - 25*H(n-5,1)^2 + 25*H(n-5,2) + 35*H(n-5,1) - 10)*(n-5)! for n >= 5 where H(n,1) = Sum_{j=1..n} 1/j is the n-th harmonic number, H(n,2) = Sum_{j=1..n} 1/j^2 and H(n,3) = Sum_{j=1..n} 1/j^3.
a(n) = Sum_{m=4..n} binomial(m,4) * 4^(m-4) * Stirling1(n,m). - Alois P. Heinz, Aug 26 2021
Conjecture: D-finite with recurrence a(n) +2*(2*n-13)*a(n-1) +(6*n^2-84*n+295)*a(n-2) +(2*n-15)*(2*n^2-30*n+113)*a(n-3) +(n-8)^4*a(n-4)=0. - R. J. Mathar, Sep 15 2021

A347276 Third column of A008296.

Original entry on oeis.org

1, 6, 5, -15, 49, -196, 944, -5340, 34716, -254760, 2078856, -18620784, 180973584, -1887504768, 20887922304, -242111586816, 2889841121280, -34586897978880, 393722260047360, -3659128846433280, 5687630494110720, 1137542166526464000, -49644151627682304000
Offset: 3

Views

Author

Luca Onnis, Aug 25 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
          (n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..30);  # Alois P. Heinz, Aug 25 2021
  • Mathematica
    a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
    a[n_, n_] = 1;
    a[n_, k_] :=  a[n, k] = (n - 1) a[n - 2, k - 1] +
        a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
    Flatten[Table[a[n + 3, 3], {n, 0, 30}]]
  • PARI
    a(n) = sum(m=3, n, binomial(m, 3)*3^(m-3)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021

Formula

a(n) = A008296(n,3).
a(n) = (-1)^n*(3*H(n-4,1)^2 - 3*H(n-4,2) - 11*H(n-4,1) + 6)*(n-4)! for n >= 4, where H(n,1) = Sum_{j=1..n} 1/j = A001008(n)/A002805(n) is the n-th harmonic number and H(n,2) = Sum_{j=1..n} 1/j^2 = A007406(n)/A007407(n).
a(n) = Sum_{m=3..n} binomial(m,3) * 3^(m-3) * Stirling1(n,m). - Alois P. Heinz, Aug 26 2021
Previous Showing 11-13 of 13 results.