cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A255533 Indices of primes in the 9th-order Fibonacci number sequence, A251750.

Original entry on oeis.org

10, 33, 43, 253, 1253, 2389
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,1,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255534 Indices of primes in the 9th-order Fibonacci number sequence, A251751.

Original entry on oeis.org

10, 12, 232, 502
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(5) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,1,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,1,0,0,0,0,0,0},510], ?(PrimeQ[#]&)]]-1 (* _Harvey P. Dale, Feb 27 2016 *)

A255536 Indices of primes in the 9th-order Fibonacci number sequence, A251752.

Original entry on oeis.org

10, 11, 21, 29, 301, 57089
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,1,0,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A268410 a(n) = a(n - 1) + a(n - 2) + a(n - 3) for n>2, a(0)=5, a(1)=7, a(2)=9.

Original entry on oeis.org

5, 7, 9, 21, 37, 67, 125, 229, 421, 775, 1425, 2621, 4821, 8867, 16309, 29997, 55173, 101479, 186649, 343301, 631429, 1161379, 2136109, 3928917, 7226405, 13291431, 24446753, 44964589, 82702773, 152114115, 279781477, 514598365, 946493957
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

Tribonacci sequence beginning 5, 7, 9.
In general, the ordinary generating function for the recurrence relation b(n) = b(n-1) + b(n-2) + b(n-3), with n>2 and b(0)=k, b(1)=m, b(2)=q, is (k + (m-k)*x + (q-m-k)*x^2)/(1 - x - x^2 - x^3).

Crossrefs

Cf. similar sequences with initial values (p,q,r): A000073 (0,0,1), A081172 (1,1,0), A001590 (0,1,0; also 1,2,3), A214899 (2,1,2), A001644 (3,1,3), A145027 (2,3,4), A000213 (1,1,1), A141036 (2,1,1), A141523 (3,1,1), A214727 (1,2,2), A214825 (1,3,3), A214826 (1,4,4), A214827 (1,5,5), A214828 (1,6,6), A214829 (1,7,7), A214830 (1,8,8), A214831 (1,9,9).

Programs

  • GAP
    a:=[5,7,9];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    I:=[5,7,9]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    LinearRecurrence[{1, 1, 1}, {5, 7, 9}, 40]
    RecurrenceTable[{a[0]==5, a[1]==7, a[2]==9, a[n]==a[n-1]+a[n-2]+a[n-3]}, a, {n, 40}]
  • PARI
    my(x='x+O('x^40)); Vec((5+2*x-3*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((5+2*x-3*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (5 + 2*x - 3*x^2)/(1 - x - x^2 - x^3).
a(n) = 3*K(n) - 4*T(n+1) + 8*T(n), where K(n) = A001644(n) and T(n) =A000073(n+1). - G. C. Greubel, Apr 23 2019

A280308 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=3, a(1)=4, a(2)=5.

Original entry on oeis.org

3, 4, 5, 12, 21, 38, 71, 130, 239, 440, 809, 1488, 2737, 5034, 9259, 17030, 31323, 57612, 105965, 194900, 358477, 659342, 1212719, 2230538, 4102599, 7545856, 13878993, 25527448, 46952297, 86358738, 158838483, 292149518, 537346739, 988334740, 1817830997, 3343512476, 6149678213, 11311021686, 20804212375
Offset: 0

Views

Author

Peter M. Chema, Dec 31 2016

Keywords

Comments

Like other tribonacci sequences, the digital root is period length 39, and is as follows: (3, 4, 5, 3, 3, 2, 8, 4, 5, 8, 8, 3, 1, 3, 7, 2, 3, 3, 8, 5, 7, 2, 5, 5, 3, 4, 3, 1, 8, 3, 3, 5, 2, 1, 8, 2, 2, 3, 7).
Completes the set of tribonacci numbers with 3,4,5 as initial terms, the others being (3,5,4), (4,5,3), (4,3,5), (5,3,4), and (5,4,3). The sum of each of the digital root periods in the above set is 162, except (4,3,5), which sums to 180; the sum of the digital root period of A081172 is also 180.
Each digital root period for tribonacci sequences has triple patterns in cycles of 13, such as period (1,4,7) or digital root of 4^n.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + a[n - 2] + a[n - 3], a[0] == 3, a[1] == 4, a[2] == 5}, a, {n, 38}] (* Michael De Vlieger, Dec 31 2016 *)
    LinearRecurrence[{1, 1, 1}, {3, 4, 5}, 40] (* Vincenzo Librandi, Jan 01 2017 *)

Formula

G.f.: (3+x-2*x^2)/(1-x-x^2-x^3). - Vincenzo Librandi, Jan 01 2017

A230016 Indices of primes in the tribonacci-like sequence, A214825.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 16, 17, 26, 32, 104, 109, 120, 133, 312, 546, 608, 2274, 2527, 2932, 4462, 4680, 6001, 7103, 17402, 17874, 20664, 26341, 27954, 32869, 36204, 41521, 49065, 64172, 66318, 196078
Offset: 1

Views

Author

Robert Price, Feb 22 2014

Keywords

Comments

a(39) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,3,3}; Print[1];Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]
Previous Showing 31-36 of 36 results.