cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A087439 Expansion of (1-4x)/((1-x)(1-3x)(1-5x)).

Original entry on oeis.org

1, 5, 22, 98, 451, 2135, 10312, 50468, 249061, 1235465, 6147802, 30650438, 152986471, 764135195, 3818284492, 19084248008, 95399716681, 476934013325, 2384476356382, 11921800651178, 59607259863691, 298031069141855
Offset: 0

Views

Author

Paul Barry, Sep 03 2003

Keywords

Comments

Partial sums of A081186. The sequence 0,1,5,22,.. is given by 5^n/8+3^n/4-3/8. Binomial transform of A087440.

Formula

a(n)=5*5^n/8+3*3^n/4-3/8.

A346992 Numbers occurring as divisors of 3^k + 5^k.

Original entry on oeis.org

1, 2, 4, 8, 13, 17, 19, 23, 26, 29, 31, 34, 37, 38, 41, 46, 47, 53, 58, 62, 73, 74, 76, 79, 82, 83, 89, 92, 94, 97, 101, 106, 107, 113, 124, 137, 139, 146, 149, 151, 152, 157, 158, 166, 167, 169, 178, 184, 188, 193, 194, 199, 202, 211, 212, 214, 221, 226, 227
Offset: 1

Views

Author

Hugo Pfoertner, Aug 11 2021

Keywords

Comments

If n is a term, then so are all divisors of n. - Robert Israel, Dec 08 2022

Crossrefs

Programs

  • Maple
    filter:= proc(n) local v;
       if igcd(n,15) <> 1 then return false fi;
       q:= 5/3 mod n;
       traperror(NumberTheory:-ModularLog(-1,q,n)) <> lasterror
    end proc:
    filter(1):= true:
    select(filter, [$1..300]); # Robert Israel, Dec 08 2022

A152105 a(n) = (10^n + 6^n)/2.

Original entry on oeis.org

1, 8, 68, 608, 5648, 53888, 523328, 5139968, 50839808, 505038848, 5030233088, 50181398528, 501088391168, 5006530347008, 50039182082048, 500235092492288, 5001410554953728, 50008463329722368, 500050779978334208, 5000304679870005248, 50001828079220031488, 500010968475320188928
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Nov 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{16,-60},{1,8},30] (* Harvey P. Dale, Jan 27 2015 *)

Formula

a(n) = (10^n + 6^n)/2. - Klaus Brockhaus, Nov 26 2008
From Philippe Deléham, Nov 26 2008: (Start)
a(n) = 16*a(n-1) - 60*a(n-2), n > 1; a(0)=1, a(1)=8.
G.f.: (1-8*x)/((1-6*x)*(1-10*x)).
a(n) = (Sum_{k=0..n} A098158(n,k)*2^(4*k))/2^n. (End)
a(n) = 2^n*A081186(n). - R. J. Mathar, Feb 04 2021
E.g.f.: exp(8*x)*cosh(2*x). - Elmo R. Oliveira, Aug 23 2024

Extensions

Extended beyond a(6) by Klaus Brockhaus, Nov 26 2008
a(19)-a(21) from Elmo R. Oliveira, Aug 23 2024
Previous Showing 11-13 of 13 results.