cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A272328 Number of integers 1<=k<=n such that phi(n)=phi(n+k) where phi is Euler's totient function A000010.

Original entry on oeis.org

1, 0, 2, 1, 2, 0, 2, 2, 2, 1, 1, 0, 2, 1, 4, 3, 2, 0, 2, 2, 4, 0, 1, 1, 3, 3, 2, 2, 1, 0, 1, 4, 3, 3, 5, 1, 3, 1, 6, 2, 3, 0, 2, 2, 7, 0, 1, 1, 2, 1, 5, 6, 1, 0, 5, 5, 5, 0, 1, 0, 4, 0, 5, 5, 4, 0, 1, 4, 2, 4, 1, 3, 6, 4, 6, 3, 5, 2, 1, 3, 1, 5, 1, 1, 4, 1, 2
Offset: 1

Views

Author

Tom Edgar, Apr 25 2016

Keywords

Comments

If n is odd, then phi(n) = phi(2n) so that a(n)>=1.
If n is a member of A043343, then a(n)=0.
It seems that every nonnegative integer appears in this sequence.

Examples

			For n=2: phi(2) = 1; whereas phi(2+1) = 2 and phi(2+2) = 2. Thus a(2) = 0.
For n=5: phi(5) = 4, phi(5+1)=2, phi(5+2)=6, phi(5+3) = 4, phi(5+4) = 6, and phi(5+5) = 4. Since phi(5) = phi(5+3) = phi(5+5), a(5) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Range@ n, k_ /; EulerPhi@ n == EulerPhi[n + k]], {n, 120}] (* Michael De Vlieger, Apr 25 2016 *)
  • PARI
    a(n) = my(x=eulerphi(n)); sum(k=1, n, eulerphi(n+k) == x); \\ Michel Marcus, Mar 08 2020
  • Python
    from sympy import totient
    nmax = 10**4
    philist = [totient(i) for i in range(1,2*nmax+1)]
    A272328_list = [philist[i+1:2*(i+1)].count(philist[i]) for i in range(nmax)] # Chai Wah Wu, Apr 26 2016
    
  • Sage
    [sum([1 for k in [1..n] if euler_phi(n)==euler_phi(n+k)]) for n in [1..1000]]
    

A322025 Ordinal transform of A322023.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 4, 1, 3, 1, 5, 1, 6, 2, 1, 2, 7, 1, 8, 1, 1, 4, 9, 1, 10, 2, 5, 2, 11, 1, 12, 1, 1, 3, 2, 1, 13, 3, 3, 1, 14, 1, 15, 1, 2, 6, 16, 1, 7, 1, 3, 3, 17, 2, 2, 1, 2, 8, 18, 1, 19, 9, 1, 4, 1, 1, 20, 3, 4, 2, 21, 1, 22, 2, 2, 2, 3, 1, 23, 1, 24, 3, 25, 1, 1, 4, 5, 3, 26, 1, 1, 5, 3, 10, 5, 1, 27, 3, 2, 1, 28, 1, 29, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2018

Keywords

Comments

Positions where 1, 2, 3, 4, 5, ... occur for the first time are 1, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 187, 191, 193, ... Note that this is not a subsequence of A000961; for example, 187 = 11*17 is a semiprime.

Crossrefs

Programs

  • PARI
    \\ Needs also code from A322023.
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v322025 = ordinal_transform(v322023);
    A322025(n) = v322025[n];

A322872 Ordinal transform of A171462, where A171462(n) = n - A052126(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 3, 3, 1, 4, 1, 2, 2, 1, 1, 3, 2, 1, 3, 2, 1, 3, 1, 4, 2, 1, 3, 4, 1, 2, 3, 2, 1, 4, 1, 2, 5, 1, 1, 3, 2, 3, 1, 2, 1, 6, 1, 3, 1, 1, 1, 4, 1, 2, 2, 4, 3, 4, 1, 1, 2, 5, 1, 5, 1, 2, 6, 3, 2, 4, 1, 2, 3, 1, 1, 5, 2, 1, 2, 3, 1, 6, 3, 2, 1, 1, 2, 3, 1, 4, 3, 4, 1, 2, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A171462[n_] := If[n == 1, 0, Module[{f = FactorInteger[n], p},
         p = f[[-1, 1]]; n(p-1)/p]];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A171462[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 21 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A171462(n) = if(1==n,0,(n-(n/vecmax(factor(n)[, 1]))));
    v322872 = ordinal_transform(vector(up_to,n,A171462(n)));
    A322872(n) = v322872[n];

A330756 Number of values of k, 1 <= k <= n, with A063994(k) = A063994(n), where A063994(n) = Product_{primes p dividing n} gcd(p-1, n-1).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 7, 1, 8, 2, 9, 1, 10, 1, 11, 3, 12, 1, 13, 4, 14, 3, 1, 1, 15, 1, 16, 5, 17, 6, 18, 1, 19, 7, 20, 1, 21, 1, 22, 1, 23, 1, 24, 2, 25, 8, 2, 1, 26, 9, 27, 10, 28, 1, 29, 1, 30, 11, 31, 2, 1, 1, 32, 12, 3, 1, 33, 1, 34, 13, 4, 14, 35, 1, 36, 4, 37, 1, 38, 3, 39, 15, 40, 1, 41, 2, 42, 16
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2019

Keywords

Comments

Ordinal transform of A063994.

Crossrefs

Programs

  • Mathematica
    A063994[n_] := If[n==1, 1, Times @@ GCD[n-1, First /@ FactorInteger[n]-1]];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A063994[n]}, b[t] = b[t]+1]];
    Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    up_to = 65537;
    A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v330756 = ordinal_transform(vector(up_to, n, A063994(n)));
    A330756(n) = v330756[n];

A331179 Number of values of k, 1 <= k <= n, with A173557(k) = A173557(n), where A173557(n) = Product_{p-1 | p is prime and divisor of n}.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 5, 1, 5, 1, 3, 2, 2, 1, 6, 4, 3, 7, 3, 1, 2, 1, 6, 1, 2, 1, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 9, 4, 6, 1, 5, 1, 10, 2, 5, 2, 2, 1, 4, 1, 2, 6, 7, 1, 2, 1, 3, 1, 3, 1, 11, 1, 3, 5, 3, 2, 4, 1, 7, 12, 3, 1, 7, 1, 2, 1, 4, 1, 6, 2, 3, 3, 2, 3, 13, 1, 6, 3, 8, 1, 2, 1, 8, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A173557.

Crossrefs

Cf. A173557.
Cf. also A081373, A331175, A331178.

Programs

  • Mathematica
    A173557[n_] := If[n == 1, 1, Times @@ (FactorInteger[n][[All, 1]] - 1)];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A173557[n]}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    v331179 = ordinal_transform(vector(up_to, n, A173557(n)));
    A331179(n) = v331179[n];

A081376 a(n) is the least number such that A067003[a(n)] = n.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118, 119, 122, 123
Offset: 1

Views

Author

Labos Elemer, Mar 24 2003

Keywords

Crossrefs

Programs

  • Mathematica
    g[x_] := Length[FactorInteger[x]] f[x_] := Count[Table[g[j] - g[x], {j, 1, x}], 0] Table[f[w], {w, 1, 100}]

A171934 Backwards van Eck transform of A000010.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 3, 2, 2, 0, 2, 0, 5, 0, 1, 0, 4, 0, 4, 8, 11, 0, 4, 0, 5, 8, 2, 0, 6, 0, 15, 8, 2, 0, 8, 0, 11, 4, 6, 0, 6, 0, 11, 6, 23, 0, 8, 6, 6, 0, 7, 0, 16, 14, 4, 20, 29, 0, 12, 0, 31, 6, 13, 0, 16, 0, 4, 0, 14, 0, 2, 0, 11, 20, 2, 16, 6, 0, 12, 0, 7, 0, 6, 0, 37, 0, 6, 0, 6, 18, 23, 16, 47
Offset: 1

Views

Author

N. J. A. Sloane, Oct 24 2010

Keywords

Comments

Given a sequence a, the backwards van Eck transform b is defined as follows: If a(n) has already appeared in a, let a(m) be the most recent occurrence, and set b(n)=n-m; otherwise b(n)=0. (Comment from A171899).

Crossrefs

Programs

  • Mathematica
    Block[{a = Array[EulerPhi, 94], b = {}, m}, Do[If[! IntegerQ[m[#]], Set[m[#], i]; AppendTo[b, 0], AppendTo[b, i - m[#]]; Set[m[#], i]] &@ a[[i]], {i, Length[a]}]; b] (* Michael De Vlieger, Apr 06 2021 *)
  • PARI
    up_to = 105;
    backVanEck_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = i-pp, outvec[i] = 0); mapput(om,invec[i],i)); outvec; };
    v171934 = backVanEck_transform(vector(up_to,n,eulerphi(n)));
    A171934(n) = v171934[n]; \\ Antti Karttunen, Apr 06 2021

A344772 Ordinal transform of infinitary phi, A091732.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 2, 3, 2, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 1, 3, 2, 3, 1, 3, 4, 5, 1, 6, 1, 2, 1, 2, 1, 3, 1, 5, 2, 2, 1, 4, 2, 4, 3, 2, 1, 6, 1, 4, 2, 1, 3, 2, 1, 4, 1, 7, 1, 8, 1, 4, 5, 1, 2, 9, 1, 3, 1, 3, 1, 5, 1, 2, 1, 5, 1, 3, 2, 2, 4, 2, 3, 6, 1, 6, 2, 4, 1, 4, 1, 6, 7
Offset: 1

Views

Author

Antti Karttunen, May 31 2021

Keywords

Comments

Number of values of k, 1 <= k <= n, with A091732(k) = A091732(n).

Crossrefs

Cf. also A081373 (ordinal transform of phi), A303756 (of Carmichael's lambda), A330739 (of unitary phi).

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1]));
    iphi[1] = 1; iphi[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1);
    b[_] = 0;
    a[n_] := a[n] = With[{t = iphi[n]}, b[t] = b[t] + 1];
    Array[a, 105] (* Jean-François Alcover, Dec 27 2021, after Amiram Eldar in A091732 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); };
    v344772 = ordinal_transform(vector(up_to,n,A091732(n)));
    A344772(n) = v344772[n];
Previous Showing 21-28 of 28 results.